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Abstract

The discovery of the Stern—Gerlach (SG) effect almost a century ago was followed by suggestions to use
the effect as a basis for matter-wave interferometry. However, the coherence of splitting particles with
spin by a magnetic gradient to a distance exceeding the position uncertainty in each of the arms was
not demonstrated until recently, where spatial interference fringes were observed in a proof-of-
principle experiment. Here we present and analyze the performance of an improved high-stability SG
spatial fringe interferometer based on two spatially separate wave packets with a maximal distance that
is more than an order of magnitude larger than their minimal widths. The improved performance is
enabled by accurate magnetic field gradient pulses, originating from a novel atom chip configuration,
which ensures high stability of the interferometer operation. We analyze the achieved stability using
several models, discuss sources of noise, and detail interferometer optimization procedures. We also
present a simple analytical phase-space description of the interferometer sequence that demonstrates
quantitatively the complete separation of the superposed wave packets’.

1. Introduction

The discovery of the Stern—Gerlach (SG) effect [ 1, 2] was followed by ideas concerning the construction of an SG
interferometer (SGI), consisting of a freely propagating atom exposed to four magnetic gradients from
macroscopic magnets [3]. The signal of this transverse closed-loop interferometer (i.e. with an enclosed area) is
spin orientation at the output port, which is determined by the relative phase between the two spin components
that propagate through the two arms However, starting with Heisenberg, Bohm and Wigner [4] a coherent SGI
was considered impractical because it was thought that the macroscopic device could not be precise enough to
ensure a reversible splitting process. Englert, Schwinger and Scully analyzed the effect in more detail and named
it the Humpty-Dumpty effect [5-7].

Attempts towards the implementation of an SGI as envisioned in the past were followed by impressive
experiments where signals of spin coherence were detected in a longitudinal interferometer from a beam of
atoms passing through regions with magnetic gradients [8—19]. These experiments suffered from three major
drawbacks: first, there was no recombination stage and so the splitting could only be done to a distance on the
order of the nano-meter scale coherence length, or else the signal was completely suppressed. Second, as this was
abeam experiment, there was no possibility to analyze the results on an event-by-event basis, and third, there
was no possibility to image the two wave packets to directly estimate their relative velocity and distance.
Coherent splitting of an atomic cloud by the SG effect, where each atom is split into a superposition of spatially
separated wave packets with a distance exceeding the position uncertainty in each of the arms, was demonstrated
only only recently in a proof-of-principle experiment [20]. The experiment used a recombination scheme based
on the time-of-flight (TOF) expansion of the wave packets, after both wave packets were transformed into an

2 We dedicate this work to mark the 100 year anniversary of the start of the Stern—Gerlach experiment in Frankfurt.
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indistinguishable spin state. This was made possible by the long experimental times available due to the slow
velocity of the atoms, initially trapped and prepared in a Bose—Einstein condensation (BEC) state, as well as the
inherent nonlinearity of the applied magnetic gradients giving rise to a focusing (lensing) effect. Due to the large
splitting (relative to the wave packet width), spatial interference fringes could be observed from the SG effect for
the first time, turning this experiment into an analog of the double-slit experiment.

The interferometric scheme based on spatial interference fringes has an advantage over the closed-loop four-
magnetic-gradients interferometer originally envisioned, in that it does not require very accurate recombination
of two wave packets with different spins, as we demonstrate in this paper. Specifically, it is insensitive to
imperfections of the wave packet shape, and to magnetic gradient imperfections giving rise to the Humpty-
Dumpty effect. On the other hand, it requires high resolution imaging of the fringe patterns and therefore limits
the final separations in position or momentum between the two wave packets. This limitation can be overcome
by additional accelerating and stopping stages, as demonstrated with Bragg splitting [21]. Such robustness may
eventually lead to advantageous technological applications.

Here we present an analysis of the performance of a high stability SG spatial fringe longitudinal
interferometer, based on an atom chip [22], over a range of momentum splitting and separation distances
allowed by the resolution of our imaging system (up to a differential velocity of ~10 mm s~ after splitting and
separation of ~4 pym). For this range we show a multi-shot visibility (a measure of stability) larger than 90%,
corresponding to a phase instability smaller than 0.45 radians. We analyze the sources of instability and compare
to theoretical models. In addition, we present a quantitative description of the interferometric sequence in terms
of relative phase-space coordinates (position and momentum). Using this description we show that before
expansion and overlap the wave packets in the two interferometer arms are separated from each other by a
distance of more than an order of magnitude larger than their width, which proves a full separation of the two
interferometer arms.

The improved phase stability analyzed here was already used to realize a self-interfering atomic quantum
clock [23], and to demonstrate a complementarity relation for such a clock interferometer [24].

The structure of this paper is as follows. In section 2, we describe the experimental procedure and define our
observable. In section 3 we present the achieved stability of the interferometric signal and compare it to
theoretical models, discuss sources of instability, and detail the optimization procedure that enabled the high
stability performance. In section 4 we present a phase-space description of the interferometric sequence and in
section 5 we conclude and discuss possible future developments.

2. Interferometer sequence and signal

2.1. Experimental procedure

In our spatial fringe interferometer the initial atomic cloud is first prepared in a superposition of two spin states,
which allows for splitting into two wave packets with different momenta using the SG effect, utilizing a pulsed
magnetic gradient generated by the chip. The two wave packets split in space during free propagation, and are
then rotated to have the same internal state. A second magnetic gradient pulse then stops the wave packets with
respect to each other at a certain relative distance between them. After expansion and overlap of the wave packets
spatial interference takes place, in a way that is analogs to a double-slit experiment with light. This sequence is
different from a full-loop SGI [25, 26], where the two arms are kept with different spins throughout the sequence
and recombined in space to form a spin population signal.

The experimental sequence is shown in figure 1. We begin by preparinga BEC of about 10* *’Rb atoms in the state
|F, mg) = |2, 2) inamagnetic trap located about 90 pim below the surface of an atom chip, where the chip extends
along the x—y plane atz = 0. The harmonic trap frequencies are w,/27 ~ 40 Hzand w,/27 ~ w,/2m ~ 126 Hz
where the BEC has a calculated Thomas—Fermi half-length of ~9 ym along xand ~3 pim along y and z. The trap is
created by a copper structure located behind the chip with the help of additional homogeneous bias magnetic fields in
the x, y and zdirections (x is the direction of current on the chip, y the imaging axis, z the direction of gravity). The BEC
is then released from the trap, and falls a few sm under gravity for a duration of 0.9 ms. During this time the magnetic
fields used to generate the trap are turned off completely. Only a homogeneous magnetic bias field of 36.7 G in the y
direction is kept on to create an effective two-level system via the nonlinear Zeeman effect such that the energy splitting
between our twolevels |2, 2) = |2)and |2, 1) = |1)is E;; & h x 25 MHz, and where the undesired transition to the
|2, 0) state is off-resonance by Ey; — Ejg &~ h x 180 kHz. As the interferometer sequence is performed under
conditions of free expansion, the time scale for many-body effects of atom-atom interaction are much longer than the
duration of the sequence, so that the experiment may be described by single-atom physics (except for a mean-field
repulsive potential that determines the initial shape and expansion rate of the BEC cloud).
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Figure 1. The longitudinal Stern—Gerlach spatial fringe interferometer (z position versus time). The signal is made of spatial
interference fringes. For interference to occur the two wave packets are made to have the same spin with a 77/2 pulse and a selection of
two of the four emerging wave packets. This configuration does not require high precision and it is mainly sensitive to shot-to-shot
stability. Note that as the two wave packets have the same spin during the stopping, a long stopping pulse giving rise to an harmonic
potential is required. This creates a tight focus for the wave packets. Figure is plotted in the center-of-mass frame.

Each atom in the atomic cloud is initially prepared in state |2). The interferometer sequence begins by
applying a radio-frequency (RF) /2 pulse (10 ps duration) to create an equal superposition of the two spin
states, |1) and |2). A magnetic gradient pulse (splitting pulse) of duration T} = 4-16 us creates a different
magnetic potential V,, (z) for the different spin states m;, thus splitting the atomic spatial state into two wave
packets with different momentum. The gradient pulse is generated by running current on the atom chip wires
(see section 3.4 for details on the chip structure). Just after the splitting pulse, another RE 7/2 pulse (10 us
duration) is applied creating a wave function made of four wave packets (similar to the beam splitter described in

1

[20]):|py) = = pp Xo) £ |p,> Xo)), where |p, x) represents a wave packet with momentum p; , acquired by

states |1) and |2) during the splitting, and central position x (X, is the position of the atoms during the splitting
pulse), and the plus and minus signs correspond to the final spin states |1) and |2), respectively (see figure 1). In
this experiment we choose to work with the momentum superposition of the wave packets having spin |2) (while
disregarding the superposition of |1), which after a second gradient (noted below) and TOF is at a different final
position). The time interval between the two RF pulses (in which there are only two wave packets, each having a
different spin) is reduced to a minimum (~40 ps) to suppress the hindering effect of a noisy and uncontrolled
magnetic environment so that the experiment does not require magnetic shielding (see section 3.4 for more
details). The minimal time between the two RF pulses is determined by a magnetic ‘tail’ of the gradient pulse,
which at shorter times affects the resonance of the two-level system. A second magnetic gradient pulse of
duration T) is designed to stop the relative motion of the two state |2) wave packets. As both wave packets have
the same spin state, the magnetic gradient can stop their relative motion due to its curvature, as the slower wave
packet is closer to the chip and hence experiences a stronger accelerating force relative to the faster wave packet
which is further away. After this second pulse, the atoms fall under gravity. We then take an absorption image of
the atoms and produce an optical-density image, as shown in figure 2.

In contrast to a full-loop SGI based on splitting and recombination of two wave packets with different spin
states [25, 26], the spatial fringe interferometer provides an interference signal even if the recombination
(stopping) is not precise, as long as the momentum distribution of each of the wave packets is wider than the
momentum difference after stopping. It follows that this interferometer does not require high precision of the
splitting and stopping operations but rather requires a high repeatability of these operations from shot to shot,
which is essential for high phase stability.

The RF 7/2 pulses are generated by an SRS SG384 RF signal generator, and subsequently amplified by a
Minicircuit ZHL-3A amplifier. We modulate the RF power using a Minicircuit ZYSWA-2-50DR RF switch. The
RF radiation is transmitted through two copper wires located behind the chip. The chip wire current is driven
using simple 12 V batteries connected in series, and is modulated using a home-made current shutter (IGBT
switch). The shot-to-shot charge fluctuations are measured to be 6Q/Q = 0.36%, where Q is the total charge
running through the chip in a single pulse. The total resistance of the three chip wires is 13.51 {2 when the chip
temperature has stabilized after a few hours of running the system (see section 3.4 for further details about chip
design).
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Figure 2. Single and multi-shot interference fringes from the SG spatial fringe interferometer with a BEC and a thermal cloud, along
with a 1D cut showing fits to equation (1) (modified in (D)). (A), (B) Two typical single shot interference fringes usinga BEC, for a
gradient pulse duration T; = 14 us. These are a sub-sample from the images used to generate the multi-shot image in (C). The shot-
to-shot fluctuations of the cloud position (with a standard deviation 122 yum in the sample shown here) is due to fluctuations of

~1 pmin the initial position of the released cloud. These fluctuations give rise to smearing of the envelope of the multi-shot image
without additional phase fluctuations, as explained in section 4. The average single-shot visibility of all images in the sample is

(Vi) = 0.37, extracted from the fit of each image. (C) A multi-shot image created by summing (averaging) 43 consecutive interference
images (no correction or post-selection), with a visibility of Vy,,, = 0.33. Correspondingly, the normalized multi-shot visibility is
Vins = Vaum /(V:) = 0.90 (section 2.2), corresponding to a high stability of the interference phase and periodicity. (D) A single-shot SG
spatial interference pattern of a thermal cloud (zero condensate fraction), for a gradient pulse duration T} = 4 ys. Single-shot
visibility is 0.65, 27% lower than the single-shot visibility of a BEC using the same experimental conditions (reference image is not
shown). This shows that our interferometer is robust to initial state uncertainties and does not rely on the inherent coherence of a
BEC.

2.2. Normalized multi-shot visibility

The visibility and phase of the acquired atomic fringe patterns are extracted from the absorption image by taking
acutalong zat the center of the wave packet envelope, and averaging along the x dimension to reduce noise. The
one-dimensional cut is then fitted to a sine function with a Gaussian envelope

n(z) = Aexp[czgijo)z] X [1 + VSin(ZTﬂ-(Z — Zyef) + ¢):| + ¢ ey

g

where the fitting parameters as the amplitude A, the center position zy, the Gaussian width o, the fringe
periodicity ), the interference fringes visibility V, and the phase ¢. z¢is a fixed phase reference point (usually
taken to be middle of the image). Typical fitting results can be seen in figure 2.

The visibility of single-shot images in our experiment can be quite high (~0.9 for certain experimental
parameters), while the main effect of instability is shot-to-shot fluctuations of the phase. In order to characterize
the stability of the phase, which is the main figure of merit in interferometry, we use as our signal the multi-shot
image made by summing many interference patterns one on top of the other with no post-selection or alignment
(each interference pattern is a result of one experimental cycle), and dividing by the number of patterns (such
that the multi-shot is an average). Large phase noise and interference periodicity noise in a set of single-shot
images would result in alow multi-shot visibility, while low noise corresponds to high multi-shot visibility (see
section 3.3; a quantitative relation is derived in appendix A.2). The multi-shot visibility is therefore a measure of
the stability of the phase and periodicity. As in the single-shot case, we extract the multi-shot visibility by fitting
the multi-shot sum image to the form of equation (1) (see figure 2(C)).

In order to eliminate technical effects irrelevant to stability which affect the multi-shot visibility, we
normalize the multi-shot visibility to the mean of the single-shot visibilities taken from the same sample. This
normalization eliminates effects such as visibility reduction due to an impure BEC (thermal atoms), lack of
perfect overlap between the wave packet envelopes in 3D, as well as imaging limitations such as inaccurate focal
point, limited focal depth, spatial resolution, movement of the interference fringes relative to the camera during
the image integration time (smearing), and so on. The normalized multi-shot visibility V,,, is therefore given by
Vins = Veum / ( Vi), where Vi, is the (un-normalized) visibility of the multi-shot sum image extracted from the
fit, and (V;) is the mean visibility of the single-shot images which compose the multi-shot image. The error bars
are estimated by
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2 2 2 \2
AV = Vi ¥ \/(AVS“‘“) +1[AVS) +i(71 — V‘“S) , )
Vsum N <VS> 2N Vms
where AV, is the fit error of the visibility of the multi-shot sum image, AV is the measured standard deviation
of the single-shot visibility (N being the sample size), and the third term under the square root estimates the
expected relative standard error of the normalized multi-shot visibility due to the finite sample size (see
appendix A.2 for the derivation).

The normalized multi-shot visibility reflects shot-to-shot phase fluctuations between the single fringe
patterns in the sample. Phase fluctuations along the fringe axis include fluctuations of the global phase ¢ of the
single-shot patterns (with standard deviation d¢) and of the single-shot fringe periodicity A = 27/ (with
standard deviation 6« for the wave number «). As shown in appendix A.2, these fluctuations are related to the
multi-shot visibility by

Vins exp[—%(éd)z + afméf:z)], 3)

where o, is the Gaussian width of the multi-shot pattern. A more accurate theoretical expression for the multi-
shot visibility and an alternative definition of V,,s based on a more general mathematical procedure rather than a
fitis also given in section 3.3.

3. Stability analysis and optimization

In this section we present the optimal stability of the SG spatial fringe interferometer in terms of the normalized
multi-shot visibility, which represents the stability of the interferometric phase, as defined above in section 2.2.
This optimal stability has been achieved after an optimization procedure described below in section 3.4. In
addition to measuring the optimal stability and in order to demonstrate the mechanism leading to phase
instability we have also examined the effect of a specific source of instability—fluctuations of the splitting pulse
strength—on the multi-shot visibility. The experimental results are compared to a few theoretical models
described in section 3.3.

3.1. Optimal stability

Figure 3 shows the measured normalized multi-shot visibility, V.., as a function of the splitting gradient pulse
duration. The upper data points (blue and magenta circles) represent the multi-shot visibility after optimizing
the sequence, compared with predictions from several theoretical models (see section 3.3). We find high multi-
shot visibility (> 90%) for momentum splitting up to 10 mm s~ ', the equivalent of ~2hk (where A = 1 yumasa
reference comparing to laser pulse Raman interferometers), corresponding to a high stability of the phase and
interference pattern periodicity. These results demonstrate the current stability limits of our interferometer.

In table 1 we present the parameters used for each data pointin figure 3. The free propagation time T,
between the pulses and the stopping pulse duration T, were chosen so as to optimize the multi-shot visibility by
minimizing the effect of fluctuations in parameters of the interferometric sequence such as the initial trapping
position or the stopping pulse duration, as detailed in section 3.4.

In table 1 we also show some wave packet parameters calculated from the experimental parameters or by
using equations (11), (12), and (16) in section 4. We compare the experimental and theoretical values of the wave
packet separation, d, at the end of the stopping pulse. The experimental value of d is calculated by substituting
the measured spatial period of the fringes A into d = hTy/m\, where Tyis the TOF (equation (16)). The
theoretical value of the separation is calculated from equation (12) by using the experimental parameters, with
an estimated value w = 27 x 800 Hz for the stopping pulse curvature, averaged over the range spanned while
the atoms move (see section 4). The theoretical result differs from the values calculated from the fringe
periodicity by no more than 4%. The separation dis larger than the minimal Gaussian wave packet width o, by
afactor 8-33. This minimum wave packet size is due to the focusing power of the stopping pulse, as discussed in
section 4 and depicted in figure 1. The spatial separation being much larger than the minimum wave packet
width is an experimental fact that is evident from the appearance of multiple fringes in the final interference
pattern (d/ o min roughly represents the number of interference fringes of a single pattern). However, this wave
packet separation is inversely proportional to the spatial period of the fringes, A, and as our TOF is
experimentally limited by the field of view of the camera and its sensitivity, it follows that the wave packet
separation is limited by the practical resolution of the imaging system and cannot exceed the maximal value of
about 4 pum. Such a separation corresponds to a fringe periodicity of about 25 pm for the used values of TOF (as
our optical resolution is ~5 pm, and it is necessary to measure several points in order to distinguish a fringe
pattern). Such a fringe pattern was observed in our experiment (magenta point in the optimal stability data in
figure 3). Another effect limiting the observation of small-periodicity interference patterns is smearing of the
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Figure 3. Analysis of interferometer stability: normalized multi-shot visibility (a measure of stability) versus splitting pulse duration
T). Data show the multi-shot visibility of sequences that minimize phase fluctuations (optimized stability—blue and magenta circles),
and similar sequences where current fluctuations were artificially injected into the splitting pulse in order to examine the effect of
instability (engineered instability—blue squares). The optimized stability data demonstrates the high stability achieved in the
experiment (the magenta point corresponds to the largest obtained wave packet separation of 4 ;zm). Dashed and solid lines show
predictions of several theoretical models (see section 3.3 for a description). The timings are detailed in table 1. The raw data for the

T, = 14 ps optimized stability data point is shown in figure 2. Error bars include fitting errors for each multi-shot pattern, standard
error of the mean (SEM) of single-shot visibility, and uncertainty due to the finite sample size (equation (2)), and do not account for
long term drifts.

Table 1. Parameters of the interferometer data points in figure 3: Ty, Ty, T, and TOF are time durations of stages of
the interferometer sequence (as defined in figure 1). (V;) is the mean single-shot visibility for each data set. The
separation d achieved during the sequence is calculated from the experiment using the observed periodicity of the
interference pattern A (equation (16)), and theoretically by the analytic equation (12), using the experimental
parameters, with an estimated effective harmonic frequency of w/2m = 800 Hz. The scaling factor £ describes the
squeezing in phase space (see section 4, equation (11)), and o,,;, describes the minimal wave packet width at the
focal point (equation (15)). Note that the initial wave packet widthis o,y = 1.2 pum [25]. The last column describes
the parameters of the large wave packet separation sequence (magenta data point in figure 3). Same parameters were
used for both the optimized stability and the engineered instability data (expect for the last column, used only in the
optimized stability case).

T, (ps) 4 6 8 10 12 14 16 10
T, (us) 116 174 132 90 130 106 114 600
T> (1) 200 150 180 220 200 200 200 70
TOF (us) 6760 6750 8760 12 760 12 738 13 810 13 800 21 450
(V) 0.75 0.52 0.44 0.42 0.45 0.37 0.29 0.34
No. images 40 45 42 64 41 43 47 45
exp. d (um) 0.55 0.98 1.14 1.31 1.66 1.92 2.25 3.93
theo. d (uim) 0.57 0.99 1.19 1.37 1.79 1.94 2.21 3.90
Scaling factor & 1.16 1.34 1.21 1.11 121 1.13 112 3.36
Omin (1) 68 79 71 65 71 66 66 190

pattern due its movement during CCD integration (imaging), an effect which increases as the periodicity
decreases. This effect combined with the limited optical resolution causes the single-shot visibility (V;) to
decrease as the periodicity decreases (d increases), as seen in table 1.

In figure 4 we demonstrate the achieved stability after the optimization procedure, by showing the
interferometer phase stability over more than 3 h of continuous data taking. Although the experimental
parameters are the same as those used for the data point of T; = 10 psin figure 3, the multi-shot visibility for
this data set reduced to Vi, = 0.89. We attribute this reduction to the fact that the data in figure 4 were taken a
few weeks after the optimization procedure leading to the stability of the data set used for figure 3, such that
during this time long time drifts have driven the system away from the optimal stability parameters.

The shot-to-shot fluctuations leading to the reduction of visibility in the optimized interferometer sequence
follow mainly from fluctuations in the interferometer device (i.e. gradient pulse durations and currents) and not
from fluctuations of the initial BEC preparation. This is further demonstrated in figure 2(d), where we show a

6
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Figure 4. Interferometer phase stability over a few hours: phase as a function of time, for T} = 10 s, Ty = 90 s, and T, = 220 ps.
The standard deviation of the phase is 0.37 rad, and the normalized multi-shot visibility is V},,s = 0.89 = 0.03. Evaluating equation (3)
with the experimental parameters 6k = 27 - A/ X = 2636 [1/m]and o, = 170 pum, we obtain V,;,; = 0.851. The small
discrepancy between the experimental and theoretical values is probably due to correlations between center position and the
periodicity and phase (see appendix A.2 for discussion). Inset: a polar plot of phase versus single-shot visibility (shown as angle versus
radius).

single-shot SG spatial interference pattern of a thermal cloud (zero condensate fraction), instead of a BEC. The
high single-shot visibility proves that our interferometer is robust to initial state uncertainties and does not rely
on the inherent coherence of a BEC. Since a thermal cloud has a larger initial size (compared to a BEC), each part
of the cloud feels a different force due to the nthomogeneous gradient (nonlinear magnetic field pulse), causing a
wavelength chirp of the resulting interference fringes. To account for this effect, we fit image figure 2(d) by
modifying the argument of the sine function in equation (1) to ¢ + 2TW(Z — Zref) + ki(z — zr)?, where the
parameter k; represents the wavelength chirp.

3.2. Engineered instability

Let us now examine the effect of a single source of instability, namely, fluctuations of the chip current during the
splitting of the atoms, on the instability of the interferometric phase and its consequent effect on the normalized
multi-shot visibility. In order to demonstrate this effect we have engineered artificial fluctuations of the current
and examined the resultant suppression of the multi-shot visibility. The engineered instability data is presented
in figure 3 (blue squares).

The engineered instability data was produced by changing the chip voltage driving the splitting pulse using a
voltage stabilizer circuit, with corresponding variable values of chip current, and recording several experimental
cycles for each value of the current. The stopping pulse current was kept constant. Figure 5 shows the resulting
single shot interference phase as a function of the applied chip current during the first gradient pulse T}, where a
clear linear relation to the applied chip current is seen. These data are used to produce the engineered instability
datain figure 3.

The engineered instability multi-shot fringe patterns are produced by summing over the many single-shot
images composing figure 5, with different values of the splitting pulse currents. In order to properly emulate the
spectrum of natural noise, the averaged image is obtained by taking a weighted average of single-shot images
such as to create a normal distribution of currents, where its width is set to 6I/I = 15.47 mA/860 mA = 1.8%.
As the phase is linear with the applied current, such a distribution corresponds to a normal distribution of
phases. Summing multiple phases and periodicities causes a chirp of the interference periodicity, and a spatial
chirp of the interference visibility. Due to these chirping effects, we cannot extract the visibility of these multi-
shot images by fitting the pattern to equation (1). See appendix A.1 for an explanation of the visibility extraction
process.

Since the engineered instability data presented in figure 3 were taken a few months after taking the optimized
stability data, the same experimental parameters gave normalized multi-shot visibility 2%—10% lower than the
original data, due to long term drifts. To suppress the effect of this drift on the engineered instability data, we
normalized each measurement to a corresponding one using the same experimental parameters, in which zero
noise was added (i.e. the chip current was held constant throughout the measurement). Normalization is done
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Figure 5. Interference phase as a function of the applied chip current during the first gradient pulse T}, used to produce the engineered
instability data in figure 3. The phase data has been shifted vertically for clarity. The phase is clearly linear with the applied chip
current, and we also confirm that the slope divided by T} of all curves is equal within error bars, as would be expected from theory. The
mean slope divided by T} is 9¢/0L /T, = 6.49 rad A" s,

by dividing V,,,; of the engineered instability data by V,,,; of the reference zero-added-noise data (taken within the
same data set). The result of such a normalization is that only the injected noise affects the results.

One can see that the error bars of the engineered instability data in figure 3 are much bigger than those of the
optimized stability data. We explain this by noting that the error bars are estimated using equation (2), in which
the third term under the square root estimates the expected relative standard error of the normalized multi-shot
visibility due to the finite sample size (equation (A13)), and is given by (1 — VZ2.)2/(2NVZ)). Since this factor
grows larger as V ,,, approaches low values, it results in a large error estimation, even when the number of single
shots Nis high (N = 138-267 for the engineered instability data).

3.3. Theoretical models
For generating the theoretical curves in figure 3 we have used numerical and analytical models. As can be seen, all
models show good agreement with both optimized stability and engineered instability data sets.

The single-particle splitting model (dashed and solid green lines in figure 3, for the optimized stability and
engineered instability runs, respectively) is a straight-forward numerical quantum simulation of a noisy single-
particle splitting process similar to the splitting done in our experiment. The validity of this model is based on
the fact that the stopping pulse is optimized for completely stopping the relative motion of the two wave packet
centers, and that the major source of shot-to-shot fluctuations is in the splitting pulse of duration 7. In this case
the interference fringe patterns observed after along TOF are a scaled (magnified) copy of the interference
patterns formed just after the splitting pulse as a result of the differential phase gradient imprinted on the initial
wave-packets of the two spin states (equivalent to a differential momentum transfer), as shown in section 4.
Therefore this model takes the multi-shot visibility of the fringes formed just after the splitting pulse as
representing the visibility expected to be observed in the actual experiment. The relative fluctuations of the
magnetic field amplitude during splitting are assumed to have a Gaussian distribution, with a standard deviation
of 6B/B (for zero noise in the splitting pulse timing, this would be equal to 61, /I;, where I, is the current of the
splitting pulse). The Schrédinger equations for the evolution of the two wave packets ¥, (z, t) and ¥, (z, 1),
corresponding to the two spin states, are solved many times for different values of 6B/ B and the resulting
interference patterns are summed up to yield a multi-shot pattern, which is then fitted to the form of
equation (1) to extract the multi-shot visibility. The values used for 6B/B were 0.69% and 1.8%, respectively for
the optimized stability and engineered instability data. The first value was chosen to produce a fair fit for the data,
while the second is the experimental value used for 6I; /I; when producing the added noise. The agreement of
this simplified model with the experimental results demonstrates the sensitivity of our interferometer to the fine
details of the magnetic field and its fluctuations during the splitting.

The Gaussian fringe model (dashed and solid black lines in figure 3, for the optimized stability and
engineered instability runs, respectively) is an analytical phenomenological model of fringe patterns assuming
Gaussian fluctuations of three parameters characterizing the single-shot fringe patterns: phase ¢, wave-number
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k = 2w/ and center position z, (see equation (1)). The standard deviations of these parameters are
correspondingly denoted by 6¢, 6k, and dz. In appendix A.2 we show that, regardless of the source of these
fluctuations, such an assumption leads to the following form for the multi-shot visibility:

|1
P 21+ ok 6K?

V1 + o2 6K?

where 0., = 0% + 822 is the Gaussian width of the multi-shot fringe pattern, with o being the width of the
single-shot pattern as in equation (1). Although this model does not rely on the assumption of optimal stopping
asin the previous model, the specific form of equation (4) is obtained for the case where the phase and wave-
number fluctuations are correlated, which is true at least in the case of the engineered instability data, where the
main source of fluctuations is current instability during the splitting pulse. Since the fringes observed after TOF
are a scaled picture of the microscopic fringes created just after the splitting pulse (section 4), we may replace all
the parameters in equation (4) with the corresponding parameters of the microscopic imprinted fringes, where
Okis the wave-number fluctuation which is equal to the fluctuation of the differential momentum transfer ik
(k= 0.9 (um ps) ' x Ty(us), 6z = 1 ym corresponds to the initial trapping position fluctuations and

o = 1.2 pm s the Gaussian width of the initial BEC cloud). The relation between these fluctuations is then

0¢/ 0K = z;, where z; is the distance of the mean atomic cloud center from the magnetic field quadrupole center
during the splitting pulse. The theoretical curve of the engineered instability data in figure 3 was calculated by
using equation (4) assuming z; = 5 um, and using 0,,s = 1.56 um (wave-packet width + initial position
uncertainty), and 6x/k = 1.8% (value of the induced fluctuations). For the optimized visibility data, where V
is high, the correlation between the phase and wave-number fluctuations is not important, as the theoretical
expression for V., can be approximated by equation (3) regardless of this correlation. In this case if we assume a
relation between 0k and 8¢ as above we need to take 6k /K = ¢/ = 0.69% in order to reproduce a fair fit to
the data. This value for the fluctuations is about twice higher than the independently measured fluctuations of
the current x pulse duration Q; = I, T; of 6Q,/Q; =~ 3.6 x 10 in the splitting pulse. The discrepancy may be
attributed to the fact that an important source of fluctuations is also the stopping pulse, whose contribution to
the fluctuations is not known from this model.

The wave-packet propagation model (dashed and solid red lines in figure 3, for the optimized stability and
engineered instability runs, respectively) uses a semi-analytical method in which the three-dimensional
trajectory of each of the two wave-packet centers is calculated by solving Newton’s equations of motion in the
presence of magnetic forces and gravity along the whole interferometric sequence: from trap release to
observation after TOF [27]. In the center-of-mass frame of each wave packet we derive the wave-packet
evolution by taking a quadratic approximation for the magnetic atomic potential and solving for the scaling
factors describing the wave-packet sizes along the three axes [28—30]. This allows to reconstruct the wave
packets’ shape at the measurement time and hence the shape of the interference fringes at each experimental
realization. This method allows to introduce fluctuations of the current, timing or positions of the wave packets
atany part of the interferometric sequence. In figure 6 we show a comparison between the results of this model
and the experimental results for the final position and interference wavelength (periodicity \). One can see that
our numerical wave-packet propagation simulation estimates the basic parameters of the interferometer with an
accuracy of 1%. For the optimized stability data the model assumes relative current fluctuations
oI /I, = 6Q/Q = 0.36% during the splitting pulse (using the independently measured value of the relative
charge fluctuations 6Q/Q), and 6I,/I, = 0.05%, during the stopping pulse. As the fluctuations in the stopping
pulse were not directly measured, we use a number that best fits the experimental data. The fact that the stopping
pulse fluctuations are smaller may originate from the decreasing difficulty to generate stable long duration pulses
relative to short duration pulses, e.g. since timingjitter becomes less dominant for longer pulses.

For the engineered instability data we show a theoretical curve calculated by using the induced fluctuations
(61;/I; = 1.8%) during the splitting pulse. The numerical visibility was normalized to the multi-shot visibility of
simulated fringe patterns whose fluctuations are purely due to initial position fluctuations Az;j;, 0f 1 um
(standard deviation) around z = 87.5 pum from the chip.

Vins =

(C))

3.4. Optimization and suppression of instability
A major source of phase noise for the interferometer are the shot-to-shot current fluctuations in the chip wires,
which cause fluctuations of the magnetic field energy during the time between the two /2 pulses, in which the
two wave packets occupy two different spin states [20]. The previous realization of the interferometer used a
single wire on the atom chip to generate the required magnetic gradients. This setup showed limited stability in
the phase and periodicity of the resulting interference fringes [20].

To address this problem, we have designed and fabricated a new atom chip. In the new design, the magnetic
gradient pulses are generated by three parallel gold wires (along x) located on the chip surface (see figure 7),
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Figure 6. Comparison between the interferometer experimental results and the numerical wave-packet propagation model. (A) Final
zposition as a function of the first gradient pulse duration T}. (B) Residuals showing the difference between the experiment and the
simulation in (A). The mean absolute residual is 1.15%. (C) Periodicity A of the interference pattern as a function of the first gradient
pulse duration T;. (D) Residuals showing the difference between the experiment and the simulation in (C). The mean absolute residual
is0.97%. The lines in (A) and (C) are not monotonic since these are different points in a multi-dimensional space: T is not the only
parameter that changes between each point, butalso T, T, and the time-of-flight, due to the complex optimization process. Lines are
therefore only a guide to the eye. Experimental error bars represent standard error of the mean.

which are 10 mm long, 40 sm wide and 2 um thick. The wires’ centers are separated by 100 pum, and the same
current runs through them in alternating directions, creating a 2D quadrupole field (in the yz plane) with its
center atz = 98 pm below the atom chip. The phase noise is largely proportional to the magnitude of the
magnetic field responsible for the gradient [20], whereas the fluctuations in the stable current in the external
coils giving rise to the homogeneous bias field (along y) are relatively small. As the main source of magnetic
instability is in the gradient pulse originating from the chip currents, positioning the atoms near the middle
(zero) of the quadrupole field created solely by the three chip wires 98 ;sm below the chip surface reduces the
phase noise (see figure 7 for more details).

Let us note that as the durations of our interferometer operation and work-cycle are 100 us (without TOF)
and 60 s respectively, and as we take data for several hours in each run, we believe we are sensitive to fluctuations
with frequencies lower than about 10 kHz. As the shortest magnetic gradient pulse is 4 ys, we may even be
sensitive to frequencies up to 100 kHz. This captures the dominant part of the 1 /f(flicker) noise of electronic
systems.

In addition to the novel chip design, we have applied, as shown in figure 8, several optimization procedures which
aim to minimize the hindering effects of fluctuations. First, in figure 8(a) we optimize the splitting position to be close
to the quadrupole center, since this is where the magnitude of the field is smallest and consequently, as explained
previously, the fluctuations are minimized. Let us elaborate. The initial trapping distance determines the position of
the atoms relative to the magnetic quadrupole created by the chip wires during the gradient pulses. At a given distance
|z — Zquadl from the quadrupole center the differential phase fluctuations ¢¢ are proportional to the relative current
fluctuations, such that 6¢) = — Ampgg 115 6BT, /72 = klz — Zquadl (61 /T), where k = Ampg g B'Ti /72 is the
differential momentum kick during the splitting pulse (B’ being the magnetic field gradient), 11 is the Bohr
magneton and Amp = 1. Here we have assumed that the magnetic field fluctuations are proportional to the current
fluctuations, 6B = B'|z — zquadl (0B/B) = B'|z — 2quadl (81 /). Although the phase fluctuations 6¢ at the average
position of the center of the cloud during the splitting may vanish completely if the latter coincides with the
quadrupole center, perfect visibility is not expected to be achieved due to the fluctuations of the field gradient itself
and the finite size of the atomic cloud (6 m edge to edge in the Thomas—Fermi approximation), and the shot-to-shot
fluctuations of the initial trapping position (about +1 zzm),as can be seen from equations (3) and (4). In addition,
visibility may also reduce due to imperfections in other stages of the interferometer sequence. Figure 8(a) shows the
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Figure 7. Quadrupole field generation and its benefit. (A) A picture of the atom chip (golden surface) on its mount, where copper wires
used for generating the BEC are visible behind it. Note that its orientation in the experimental setup is face down. (B) Schematic
diagram of the chip wires which are used to generate the quadrupole field. Wires are 10 mm long, 40 zm wide and 2 pim thick. The
separation of the wires’ centers is 100 #m, and the direction of the current I alternates from one wire to the next. The wires, being
much smaller than the chip, are hardly visible in (A). (C) The constant bias magnetic field (dashed black line) is necessary in order to
create a robust quantization axis for the experiment as well as an effective two-level system by inducing a nonlinear Zeeman shift. The
bias field is produced by external coils while the chip wires produce the gradients giving rise to the magnetic force. One can see that the
total magnitude of the magnetic field produced by a quadrupole and a bias (red line) is smaller than that produced by a single wire and
abias (blueline, as used in [20]), while the gradient (at ~100 z4m) is the same. Since the phase noise is largely proportional to the
magnitude of the magnetic field created during the splitting pulse [20], positioning the atoms near the quadrupole center (98 ym

below the chip surface) reduces the phase noise. We also show how an opposite gradient is produced by an opposite current in the
three chip wires.

dependence of the normalized multi-shot visibility on the initial wave-packet position when the other parameters are
kept constant. Ideally the visibility would be maximal when the atoms are closest to the quadrupole center

at = 98 um, namely, when we release the atoms from the trap at z,, = 94 jzm (taking into account a 4 ;sm falling
distance before we apply the splitting pulse). However, the initial position of the atoms also affects the magnitude of
the magnetic field gradient (related to the amount of momentum #k imprinted on the cloud) and the field’s
curvature. This influences the stability of later stages of the interferometric process, such as relative stopping of the
two wave packets by the second gradient pulse, so that the maximal visibility may require some adjustment relative to
the above points. In this work we did not perform a full combined optimization of the initial trapping position and
the delay and stopping pulse durations, but rather used a constant trapping position of about z,,,, = 87.5 ymand
optimized the duration of the delay and stopping pulses, as described in the following.

Above, we discussed the optimal atom position at the start of the interferometer. An important effect we
need to consider next are shot-to-shot fluctuations in the latter position. These fluctuations are induced by
uncertainties in the position of the magnetic trap in which the BEC is formed. We note that if the stopping
parameters are optimized, we expect the initial position fluctuations of the atoms to play a very minor role in
the final multi-shot visibility. As shown in section 4, if the stopping pulse is designed to almost completely
stop the relative motion of the centers of the two wave packets, then the final shape of the fringe pattern,
including its final position, is the same as the shape of the fringe pattern formed just after the splitting pulse,
up to ascaling factor. As the phase of the fringes after the splitting pulse, namely the position of their peaks,
are determined only by the magnetic field gradient and not by the envelope of the initial wave packet, shifts in
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Figure 8. Optimization: (A) normalized multi-shot visibility as a function of the initial trap distance from the atom chip. The other
experimental parameters are (T}, Ty, T5) = (6,104, 130) usand (12, 158, 180) us. Minimal visibility reduction due to magnetic
fluctuations during splitting is expected when the splitting position (4 um farther than the trapping distance due to free fall between
trap release and gradient time) is closest to the quadrupole center (atz = 98 pm). In practice the visibility may also be governed by
imperfections in the later stages of the sequence if the parameters are not optimized for each measurement point. The low visibility
data in this plot shows the consequence of lack of synchronization with the 50 Hz electricity grid. (B) Normalized multi-shot visibility
as a function of the stopping gradient pulse duration T, for a given splitting pulse duration (T}, = 6 us) and a few values of free
propagation time between the gradient pulses, T,;. We expect maximal visibility when the stopping pulse is designed to most accurately
stop the relative wave packet motion (T, = acot(wTy,)/w, see equation (9)). Corresponding nominal optimal values for T; = 124, 174
and 224 psare T, = 202,170 and 144 s, respectively, for an estimated curvature of w = 27 x 800 Hz.

the initial position of the wave packets before the splitting kick will not cause any phase shifts. It follows that
the positions (phase) of the observed fringes are expected to be independent of the initial wave-packet
position, even if the envelopes of the fringe patterns move, as was reported in previous work [20].

Following the above understanding, in figure 8(b) we optimize the stopping of the relative wave-packets’
motion after the free propagation time T,;. For a fixed initial trapping position (which is relatively close to the
quadrupole center) we change the second gradient pulse time T} for several propagation times T,;. For each value
of the propagation time T;, maximal normalized multi-shot visibility is observed at a corresponding stopping
time T, for which we believe that a full stopping of the relative wave-packet motion is achieved.

Next, to suppress noise from the 50 Hz electrical grid noise which is coupled to the atoms through the bias
coils’ current supplies, we synchronize the experimental cycle start time to the phase of the electrical grid sine
wave (this is done by using a phase-lock loop, which sends a trigger to the experimental control). In our
experiment this significantly reduced this type of noise (see figure 8(a)). We further suppress this noise source by
minimizing the time in which the wave packets have a different spin to 40 us. We have found that the multi-shot
visibility is not significantly sensitive to this time interval as long as it is below 200 ps. As the achieved high
normalized multi-shot visibility corresponds to phase fluctuations of less than 0.5 rad for this time period, we
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Figure 9. Interferometric sequence in phase space (Wigner function representation, (a)—(e)) and in real space (f)—(h). Positive values of
the Wigner function are represented by red and negative values by blue. The initial single wave packet (centeredatp = 0andz = 0,
not shown) is split into two momentum components (a), giving rise to a spatial interference fringe pattern (upon projection onto the
position axis, shown in (f)). Red arrows correspond to actions driven by the magnetic field giving rise to the observed wave packet
position, whereas black arrows correspond to evolution due to free propagation which follows the present wave packet position in the
plotand giving rise to the next plot. (b) and (g): After some free propagation, the wave packets separate. A quadratic potential centered
at the middle between the two wave packets performs a phase-space rotation and stops their relative motion ((c) and dashed—dotted
green curve in (h)). After some free propagation the phase-space distribution of each wave packet becomes aligned with the
momentum axis (d) and the wave-packet size in real space is minimized (dashed red curve in (h)). After along propagation time an
interference fringe pattern is formed ((e) and solid blue curve in (h)), which is a scaled picture of the initial fringe pattern shown in

(a) and (f).

can evaluate an upper limit for the fluctuations of the homogeneous bias field By during this time period. For the
used value of By = 36.7 G, the total accumulated phase difference between states |1) and |2)is ¢ = up
BoT/(2h) = 3.2 x 10 rad. We thus obtain relative fluctuations of $B/B = 8¢/ =~ 10>,

Additional sources of phase noise are phase measurement uncertainty (due to the fitting procedure) of about
0.1 rad, and chip-to-camera relative position fluctuations (along the direction of the fringes). For the latter,
assuming a shot-to-shot instability of 1 and a 31.4 pm interference pattern periodicity, these vibrations would
createa27/31.4 = 0.2 rad phase instability.

Finally, let us note that while each data point in figure 3 is a result of continuous data taking in long sessions
ranging in duration from an hour to several hours with no post-selection or post-correction, long term drifts of
magnetic fields or voltages in the system (e.g. due to warming up of the copper structure under the chip, the coils

or the electronics) were addressed by stopping the data taking and re-optimizing the interferometer. These drifts
are not taken into account in the error bars presented in figure 3.

4. Interferometric sequence in phase space

In order to gain a qualitative and quantitative understanding of the interferometric sequence in our experiment,
we use the position-momentum phase-space description in the Wigner representation. This description is
completely equivalent to the Schrodinger picture in the case where the initial state is a single-particle pure state
and allows a generalization to the case of an initial mixed state (e.g. a thermal distribution). This enables us to
derive some quantitative analytical estimations of the wave-packet width and separation during certain parts of
the sequence, as we show below. Our phase-space description of the atomic dynamics is motivated by our
previous work [31], where it was used to analyze the dynamics of an atomic cloud in an anharmonic trap. Our
treatment is different from a recent theoretical treatment of the SG experiment with phase-space methods [32],
in that we use a scalar distribution function to describe the atoms at the time where the two wave packets have
the same internal state.

The phase-space dynamics in the SG spatial fringe interferometer are demonstrated in figure 9. The wave
function is manipulated to be a superposition of two wave packets with the same spin just after the splitting stage,
such that the scalar Wigner function representation is appropriate. If the gradient pulses are fairly well

approximated by a linear+quadratic potential then phase space dynamics is described by the following
Newton’s equations of motion
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where Fis ahomogeneous force (due to a magnetic gradient or gravity) and wis a harmonic frequency
determined by the curvature of the potential. The solution of such a dynamics for all phase-space points zand p
is obtained by separating the dynamics into the center-of-mass motion governed by the homogeneous force F
and the motion relative to the center of mass, which is governed by the harmonic force. In what follows we
concentrate on the second part of the dynamics—relative to the center of mass—which determines the relative
position and momentum of the two wave packets and the shape of each of them (expansion or focusing). From
here on the phase space variables zand p will therefore denote the position and momentum relative to the center
of mass of the two wave packets and in this frame of reference we assume F = 0. During a single interferometer
stage with a time duration ¢ we will assume for simplicity that the harmonic frequency wis constant, so that

. . . . . z(tg + t) z(to)
hase space transformation from time t, to t, + tis described by a rotation = R(w, t R
phasesp 0Tt Y (p(to + t)) ( )(p(to))

where the rotation matrix is

sinwt

Riw, 1) = [ coswt ] (6)

—mw sinwt  cos wt

In the limitw — 0 the rotation in equation (6) describes free space propagation

RO, 1) = lim R(w, 1) = ((1) t/l ’”) %

After a short splitting pulse of duration T}, inducing a momentum difference #ik between the two wave
packets, they are are centered, in the center-of-mass frame, at momenta p = +hk/2, while the effects of the
splitting pulse on the wave-packet shapes are neglected (since wT; < 1). During this momentum kick the two
wave-packet centers move to a distance & /1 /4m from the origin of the center-of-mass frame. We set the time
tobet = 0at the middle of the splitting pulse, such that the center positions Z = =+ 7kt /2m and center
momenta P = +/k/2 atthe end of the pulse (t = T} /2) are the same as if the two wave packets freely
propagated from Z = 0 att = 0 with the same momenta (capital Z and P representing wave-packet centers).
This will be the starting point of our scheme (figure 9(a)).

After atime T, of free propagation (free fall) the spatial distance between the wave packets is
7k (T /2 + Ty)/m (figure 9(b)). The stopping pulse of duration T, is represented by a harmonic potential of
frequency w that rotates phase space such that the final wave-packet centers lie on the zaxis (P = 0, figure 9(c)).
As we see below, this pulse also serves to focus the wave packets into a minimal wave-packet size. After this pulse
the center coordinates become

T; 1 .
~ 0 7k | — coswT, + — sinwT;
]: R(w, BRO, Td)( o /2) o e I ®)

Z(Ty + T)
2

P(Ta + To) —wTysinwT; + coswTh

where Tg = T; + T, /2 is the effective free propagation time. The stopping pulse of length T) is designed such
that P(T; + T,) = 0. Under this condition

71 coswT’ 70)72
5 2 = .
N1+ W?T; 1+ w?T;

Note that the condition for stopping w7 tan wT> = 1 does not depend on the splitting momentum kick or
the initial center-of-mass position and momentum, so that fluctuations in these parameters are not expected to
affect the phase of the final interference fringes as long as the stopping pulse is optimized. However, as we show
below, fluctuations of the splitting momentum kick are expected to affect the distance between the wave packets
after stopping and consequently the periodicity of the interference fringes measured in the experiment.

We now look at the state of the atoms after another free-propagation time T;. As shown in figure 9(d), at this
time the slanted shape of the phase-space distribution of each of the wave packets aligns with the phase-space
coordinates and a minimal wave-packet size in the z direction is achieved, given that the initial wave packets in
the middle of the splitting pulse are minimal uncertainty wave packets. To show this, note that the combination
of the three operations: propagation for a time T, harmonic stopping pulse for a time T satisfying equation (9)
and another propagation time T transforms general phase-space coordinates as

sinwT; =

©
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. . P
RO, TR, RO, T(5) = | " | (10)
3

This sequence leads to a complete rotation of phase space by 90°, while scaling the phase-space coordinates by

the squeezing factor
=1+ = —1 (11)

sin(wh)

At this time the spatial distribution consists of two wave packetsat Z = +d/2, where

d= -5 7k, (12)
mw
and where in the limit of fast stopping relative to the propagation time wTy >> 1the distanceis d — /kT;/m.
Subsequent evolution after t) = 21; + T, transforms phase-space coordinates as z—z + p7/m, where
T =t — 1, so that the variance of the spatial distribution of each wave-packet around its center position
Z = +d/2is

2 2
(6z(1)%) = (i) (6p(0)*) + (ﬂ) (62(02) — 2--(62(0)8p(0)). (13)
mw 13 m

Ifatt = 0 the two phase-space variables are not correlated ((6z(0)6p(0)) = 0) then the wave-packet width hasa
minimum at7 = 0 (¢ = t,), where the atomic cloud is focused. More specifically, if the initial wave packet at

t = 0isa minimal uncertainty state where the initial position and momentum uncertainties satisfy

V(62(0)%) (6p(0)?) = 0,000 = 72 / 2, then the distribution corresponding to each of the two wave packets at
time #, is focused and has a minimal spatial width

Omin = io—p,O = . (14)
m

Note that if the initial momentum kick is large enough to fully separate the two wave packets, namely, fik > 0,0,
then after the full stoppingat time ty = 21; + T, the distance between the two wave packets is much larger than
their size d /oin = 7k /0,0 > 1, allowing for multiple fringes to be observed.

More generally, correlations between the phase-space variables may exist, for example, when the wave-
packet starts to expand over a time T; before the splitting, as in our experiment, such that
(6z(0)6p(0)) = T, af,’ -1 / m. In this case, which may be represented by a slanted phase-space distribution in
figure 9(a), minimum cloud size is achieved later at t = #, + (6z(0)8p(0)) £2/mw?(6z(0)?). The minimum
cloud size is then given by

5p(0)6z(0))* T,
Orin = i\/<5p(0)2> - M R igp),n % T , (15)
mw (62(0)%) mw \/02,—7} + (0p_1.T,/m)?
where the right term is for an uncorrelated distribution at t = —T;.

After stopping the relative motion between the two wave packets they are allowed to expand in free space for
along time Truntil they overlap and form a spatial interference pattern at a large scale (figure 9(e)), which is
equivalent to applying R(0, T — T) for Ty > md /710y, 5, where 0, ¢ = mwoy /€ is the final momentum
width. We obtain a spatial fringe pattern with fringe periodicity

\— 2mht _ 2nwTr (16)
md k¢
and an overall envelope width
T s w7
oy = DL = BT (17)

m §

From equations (16) and (17) it follows that the periodicity and envelope size of the final fringe pattern are those
of the microscopic fringe pattern formed during the splitting (having a periodicity A = 27/kand width o)
multiplied by a scaling factor wTr/€. The number of observed fringes is also the same in the two patterns

Mfringes ~ 2037/ X = ko o/m. More generally the total experimental sequence is a rotation of phase space by
180°, such that the final pattern observed in the experiment is the same as the microscopic pattern formed just
after splitting but scaled by a factor wTr/&.

The analytical results of the above phase-space analysis are used (see table 1) to predict some wave-packet
parameters for the gradient pulse durations used for the data points in figure 3. For comparison we present in
figure 10 numerical results of the wave-packet propagation method (see section 3.3) describing the evolution of
the wave packets in our interferometer. The process consists of an initial free-fall of the released atomic cloud for
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Figure 10. Calculated distance between the two wave packets compared with the wave-packet size during the interferometric
sequence, for the parameters of the T} = 10 ps optimal data point. The distance d (solid curve) starts to grow during the splitting pulse
(of duration T7, starting 0.9 ms after trap release) and becomes nearly constant after the stopping pulse (of duration T5). The wave-
packet size o, (standard deviation, corresponding to a Thomas—Fermi edge to edge width of 2+/7 0,) grows after the trap release and
then reduces to a minimal size after the stopping pulse due to the focusing power of the magnetic pulses. The number of fringes is
determined by the ratio d /2~/7 0. The distance and wave-packet size was calculated using a wave-packet propagation model.

0.9 ms, then splitting for T = 10 ps, free-fall for T; = 90 us and a stopping pulse for T, = 220 s (same
parameters as for the optimal T; = 10 us data pointin figure 3). The differential momentum applied during the
splittingis P/m = 6.23 mm s~ ' and the harmonic frequency during the stopping pulse ranges between

w = 27 x 950 Hz and 650 Hz due to the fact that the center-of-mass of the two wave packets is accelerated by
the magnetic potential and gravity and reaches a distance of z ~ 124 ym from the chip after the stopping pulse.
By taking an average harmonic frequency @ = 27w x 800 Hz we verify that the stopping pulse duration satisfies
the stopping requirement oTjtan @D ~ 1(where Ty = Ty + T, /2 = 95 ps). The wave-packet width (dashed
curve) reaches a minimal size of 0,3, = 0.072 pm, 139 ps after the end of the stopping pulse. Note that
according to the above phase-space analysis a minimal size of 0.065 jzm is expected to be achieved ~T; = 95 yus
after the stopping (taking the initial Gaussian width before expansion to be 1.2 gm). This gives a fairly good
estimation of the minimum wave-packet size, while the discrepancy in the focusing time can be attributed to the
mean-field repulsive force of atom-atom interactions, which tend to increase position-momentum correlations
during the evolution and is neglected in the phase-space analysis. The distance d between the wave packets (solid
line) at the focusing point turns out tobe d = 1.32 pum, compared to the analytical value d = 1.37 um (from
equation (12)) and the measured valued = 1.31 um (see table 1, 4th column).

5. Conclusions

To conclude, we have demonstrated a high-stability spatial fringe interferometer based on SG splitting of cold
atoms by a magnetic field gradient. The atomic spin is used for controlling the motion of the atoms throughout
the interferometric sequence, but while the splitting is based on two spin states, it is followed by a stage where the
atoms in the two interferometer arms have the same spin state and the interferometric signal is based only on
spatial degrees of freedom. In this way we avoid sensitivity to magnetic noise, which gives rise to classical phase
uncertainties, as well as quantum decoherence. The fact that we terminate the spin-path entanglement, also
means that we do not need to actively recombine the paths, a procedure very sensitive to experimental
imperfections [25], as we can simply get interference by allowing the wave packets to expand until they overlap.

We have analyzed the experimental results of the interferometer using several theoretical models, which
show good agreement. These models will be important for future experimental optimization procedures, which
can become faster and more efficient. In addition, we presented a simple analytical phase-space description of
the interferometer.

Our analysis of the interferometric sequence shows that we have separated the two arms of the
interferometer to a distance larger by a factor of 8—33 than the atomic wave-packet width before the wave packets
at the two arms are allowed to expand, overlap and form interference fringes. The maximal separation between
the interferometer arms in the scheme used in this experiment is not limited by the precision or stability of the
interferometer but rather by the restricted time of flight and the resolution of the optical imaging device.
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Within the whole range of momentum and distance of separation that was implemented we have demonstrated a
multi-shot visibility of more than 90%, corresponding to a phase instability of less than 6¢ ~ /—log(0.9) = 0.32
radians out of a maximum phase difference between the two arms of about ~400 radians for the longest splitting
pulselength of T; = 16 ys. This corresponds to a relative phase uncertainty of ¢/¢ < 10~°. The momentum
instability at the end of the sequence is found to be less than 6k ~ /—10g(0.9) / o ~ 3.2mm ' (using equation (3),
where o ~ 100 pum is the width of the multi-shot pattern), which is smaller by about 4 orders of magnitude than the
maximum momentum splitting of k ~ 14.5 yum™ " for T = 16 ys. These phase and momentum uncertainties are of
the same order as the measured relative current instability of 51/ ~ 10~ for the magnetic gradient pulses in our
experiment.

The spatial fringe SGI is limited in maximal spatial splitting, thus limiting its maximum sensitivity,
compared to an SGI in which the signal is spin population fringes. This limitation can be overcome by additional
accelerating and stopping stages. On the other hand, as explained, it exhibits a high level of robustness which
may enable the development of practical applications.

The work presented in this paper proves beyond doubt that there is no strong inherent limit to the coherence
in SG splitting, in contrast to some suggestions [33, 34]. It also laid the groundwork to realize a working full-loop
SGlinterferometer, as presented recently [25, 26]. The full-loop is analogous to the originally envisioned SGI
scheme and directly addresses the notion of precision of the magnetic fields, which is the topic of the Humpty-
Dumpty effect [25].
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Appendix. Calculation of multi-shot visibility

A.1. Generalized definition of multi-shot visibility

Figure 3 includes engineered instability data used to examine the effect of instability via the multi-shot visibility.
These data were obtained by injecting noise into the current driving the splitting pulse, and varying duration of
the splitting gradient pulse.

Varying the current generating the first gradient pulse affects both the phase and the periodicity of the fringes
(see equation (16)), causing two kinds of chirping effects on the output multi-shot image. The first is a chirp of
the interference periodicity, i.e. the image is composed of multiple periodicities (in contrast to a single-shot
image or to a high visibility multi-shot image which has only a single periodicity). The second kind is a spatial
chirp of the interference visibility, i.e. the visibility is position-dependent. Because of these effects, the visibility
of these engineered instability multi-shot images cannot be extracted simply by fitting the pattern to equation (1)
as we do in all other images, and we need to adopt a more general definition of the visibility. Here we explain the
procedure of extracting the visibility of these multi-shot images.

Assuming our interference pattern is composed of an envelope (e.g. a Gaussian) multiplied by some
oscillating function, one possible definition for the interference visibility is to take the Fourier transform of the
interference pattern. In x-space, the result is a sum of three terms: one centered around xk = 0—representing
the envelope, and the two othersat k = +x( = 27/ A—representing the oscillating terms The visibility can
then be defined as the ratio of amplitudes of the oscillatory components to the amplitude of the zero component:
V = [A(+Kko) + A(—Ko)]/A(0), where A(k) represent the amplitudes of the Fourier transform at point .
The visibility of the output multi-shot images is calculated according to this definition by using a numerical FFT
of each multi-shot image.

A.2. Theoretical expression
Here we develop a mathematical relation between the interference visibility (in its generalized definition
described above) and different experimental noise sources. These noise sources may be studied by examining the
statistics of different features of the single-shot interference fringes, such as the central phase and periodicity and
here we wish to understand how this statistics determines one number—the stability criterion in this paper,
namely the normalized multi-shot visibility V.

The Fourier transform of a single interference pattern of the form of equation (1) oce™(~2)*/20*
[1 4+ Vicos(kgz + ¢)]is
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A(n) _ AoeiKZUI:eUZHz/z + %Vsei(@Jr,;,ozo)eﬂ;z(ﬁfmo)z/z + %\/Se*i(d)‘f’l{[]z())e*()‘z(h"ﬂ*h?())z/z:l‘ (Al)

Here the ratio between the sum of the two side peaks at k = £k and the central peak is the single-shot visibility
V., coinciding with the definition of visibility arising from equation (1). For computing the multi-shot visibility
let us consider three kinds of shot-to-shot fluctuations: (a) phase ¢ fluctuations with standard deviation 6¢, (b)
wave-vector x fluctuations with standard deviation 6x, and (c) envelope center z, fluctuations with standard
deviation dz. If the fluctuations of these parameters are not correlated then fluctuations of the phase ¢ reduce the
amplitude of the two side peaks by

Vins (80) = e7%9°/2, (A2)

This expression can be obtained by convolving equation (A1) with a normal distribution probability density
function with width 6¢. Periodicity fluctuations of the fringes broaden the side peaks of the sum fringes at +
so that their maximum amplitude is reduced. Periodicity fluctuations also introduce phase fluctuations through
the factors e*%0% in equation (A1), if the envelopes of the single-shot fringes are not centered at a constant
reference point that can be defined as zy = 0 (which is also the reference point for ¢). We then obtain for the
amplitude of the two side peaks (up to a phase factor)

e*O'Z(I{iI{Q)Z/Z N nef%nz[az(nino)%&nzzg , (A3)
where
1
— =41 + 0%K? (A4)
n

is the broadening factor of the side peaks.

Fluctuations of the central position z, affect the shape of the three peaks at & = 0, £k in the same way and
do not affect the visibility (relative amplitudes) by themselves. However, as the position of the center of the
pattern appears in the expression in equation (A3) for the reduction of visibility due to periodicity fluctuations,
there may be a combined effect of those two kinds of fluctuations. Here we assume that these two fluctuation
sources are not correlated and average over z, with the mean of zy being (z,) = 0, corresponding to a choice of
the fringe pattern center as the reference point for the definition of the phase, we obtain
(e-Gntroz—on's/2) - — ] / 1 + 8z26k%n?. From equation (A3) we can obtain for the visibility due to
wave-vector fluctuations

1
Vins(0R) = ——=,  Oms = Vo> + 022, (A5)
V1 + 0%,6K2

where o, coincides with the envelope size of the multi-shot pattern.

If the fluctuations of the fringe periodicity and phase are due to a common source, such as current
fluctuations of the splitting pulse in our experiment, then the phase fluctuations and periodicity fluctuations
should be regarded as correlated. We then assume that the phase fluctuations are proportional to the
momentum fluctuations as §¢p = z;0k, where the proportionality factor z; in the case of the fringes formed just
after the splitting pulse in our experiment is the distance of the atoms from the quadrupole center (but it z; can be
another number in different situations). Then the normalized multi-shot visibility for the combined
fluctuations becomes

A S exp[ L LZ] (A6)

1+ ok 6k2 21 + op 62

Note that when the wave-vector fluctuations are small such that ko < 1and when the reference position for
the phase measurement is chosen to be the center of the fringe pattern (i.e. z, = 0) then both the expression for
correlated fluctuations in equation (A6) and the uncorrelated parameters (combination of equations (A2)

and (A5)) converge into the same result

e—&/»z/z

1+ oh K2

Note also that the size of the envelope o used above refers to the size of the single-shot cloud, while o,
coincides with the envelope size of the multi-shot pattern. However, for the engineered instability data, where
the main source of fluctuations is the splitting pulse, our phase-space model teaches us that the final fringe
pattern appearing in the measurement are a scaled picture of the atom number distribution just after the
splitting pulse. In that case we can interpret o as the initial BEC cloud size during splitting, while the multi-shot
cloud size 0, may refer to /o + 622, where 6z are the fluctuations of the initial BEC cloud position

Vins & R e 200 TR, (A7)
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(6z =~ 1 pm). This interpretation provides similar results as the one taking the measured wave-vector
fluctuations and cloud sizes as a basis for the calculation of the visibility.
If the fluctuations in phase, periodicity and center position are all correlated then we obtain

1 1 5¢?

X exXp| —— Yy
[(1 + 0?6K%)* + 46K%62%)!/* PIT2T 1 oo 4 20
14 o%k?

ms

(A8)

Such correlations do appear in our experiment due to the nonlinearity of the splitting and stopping gradient
pulses. An atomic wave-packet that is closer to the chip is subject to a larger force that pushes it further away
from the chip more than what we would expect if the gradient was linear, so that atoms that are initially trapped
closer to the chip get a larger momentum splitting and appear further away from the chip at the time of
observation. However, the apparent visibility of the fringes, when measured by fitting its shape to equation (1), is
larger than that predicted by the generalized definition of the visibility by a Fourier transform, due to the fact that
wave-packets with different periodicities and phases are not fully overlapping in space, such that destructive
interference between them is not complete. We would then expect the apparent visibility to be even higher than
that calculated above for the case where the center position fluctuations are not correlated with the phase and
periodicity fluctuations.

A.3. Standard error of multi-shot visibility
Let us now consider the standard error §V,,,s(N) of the multi-shot visibility V;;,s(N) due to the finite number Nin
asample. For simplicity we consider only global phase fluctuations, such that the multi-shot visibility is

1| X 1
Vis(N) = — | D€l | = —|Sy]. (A9)
N | & N
Wehave V,,(N)? = N72[(Re Sy)? + (Im Sy)? ], which has the explicit form
1 1 . .
—[ReSyP = — > [el@F9) + i@~ + cc, (A10)
N2 AN 57
1 1 L . ‘
—[ImSyP = —= > [—el@F% 4 el@=% 4+ ccl. (A11)
N2 4N %

By summing over the real part and imaginary part and separating the sum }_; el(%~% into the casej = kand
j = k we obtain

1
Vl’%lS: T

5 1+ LZ(ezi<¢r¢k> + cc) . (A12)

j=k

By taking an average over ensembles with Gaussian distribution of the phases and using the identity
(el?) = ¢i{?)e=(9")/2 the average over each of the N (N — 1) terms in the sum over j = k becomes
e~ 09" = (V,,)* and we have

(Vs (N)2) — (Vi (N))?2 = %(1 — (Vi (D). (A13)

When the distribution of phases is narrow and (Vp,s) ~ 1the standard error of the multi-shot visibility is
small, but when the visibility is small the standard error goes to the limit 6V, ~ 1/~/N.
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