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Abstract
The discovery of the Stern–Gerlach (SG) effect almost a century agowas followed by suggestions to use
the effect as a basis formatter-wave interferometry. However, the coherence of splitting particles with
spin by amagnetic gradient to a distance exceeding the position uncertainty in each of the armswas
not demonstrated until recently, where spatial interference fringes were observed in a proof-of-
principle experiment. Here we present and analyze the performance of an improved high-stability SG
spatial fringe interferometer based on two spatially separate wave packets with amaximal distance that
ismore than an order ofmagnitude larger than theirminimal widths. The improved performance is
enabled by accuratemagnetic field gradient pulses, originating from anovel atom chip configuration,
which ensures high stability of the interferometer operation.We analyze the achieved stability using
severalmodels, discuss sources of noise, and detail interferometer optimization procedures.We also
present a simple analytical phase-space description of the interferometer sequence that demonstrates
quantitatively the complete separation of the superposedwave packets2.

1. Introduction

The discovery of the Stern–Gerlach (SG) effect [1, 2]was followed by ideas concerning the construction of an SG
interferometer (SGI), consisting of a freely propagating atom exposed to fourmagnetic gradients from
macroscopicmagnets [3]. The signal of this transverse closed-loop interferometer (i.e. with an enclosed area) is
spin orientation at the output port, which is determined by the relative phase between the two spin components
that propagate through the two armsHowever, startingwithHeisenberg, Bohm andWigner [4] a coherent SGI
was considered impractical because it was thought that themacroscopic device could not be precise enough to
ensure a reversible splitting process. Englert, Schwinger and Scully analyzed the effect inmore detail and named
it theHumpty-Dumpty effect [5–7].

Attempts towards the implementation of an SGI as envisioned in the past were followed by impressive
experiments where signals of spin coherence were detected in a longitudinal interferometer from a beamof
atoms passing through regionswithmagnetic gradients [8–19]. These experiments suffered from threemajor
drawbacks: first, therewas no recombination stage and so the splitting could only be done to a distance on the
order of the nano-meter scale coherence length, or else the signal was completely suppressed. Second, as this was
a beam experiment, therewas no possibility to analyze the results on an event-by-event basis, and third, there
was no possibility to image the twowave packets to directly estimate their relative velocity and distance.
Coherent splitting of an atomic cloud by the SG effect, where each atom is split into a superposition of spatially
separatedwave packets with a distance exceeding the position uncertainty in each of the arms, was demonstrated
only only recently in a proof-of-principle experiment [20]. The experiment used a recombination scheme based
on the time-of-flight (TOF) expansion of thewave packets, after bothwave packets were transformed into an
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indistinguishable spin state. This wasmade possible by the long experimental times available due to the slow
velocity of the atoms, initially trapped and prepared in a Bose–Einstein condensation (BEC) state, as well as the
inherent nonlinearity of the appliedmagnetic gradients giving rise to a focusing (lensing) effect. Due to the large
splitting (relative to thewave packet width), spatial interference fringes could be observed from the SG effect for
thefirst time, turning this experiment into an analog of the double-slit experiment.

The interferometric scheme based on spatial interference fringes has an advantage over the closed-loop four-
magnetic-gradients interferometer originally envisioned, in that it does not require very accurate recombination
of twowave packets with different spins, as we demonstrate in this paper. Specifically, it is insensitive to
imperfections of thewave packet shape, and tomagnetic gradient imperfections giving rise to theHumpty-
Dumpty effect. On the other hand, it requires high resolution imaging of the fringe patterns and therefore limits
thefinal separations in position ormomentumbetween the twowave packets. This limitation can be overcome
by additional accelerating and stopping stages, as demonstratedwith Bragg splitting [21]. Such robustnessmay
eventually lead to advantageous technological applications.

Here we present an analysis of the performance of a high stability SG spatial fringe longitudinal
interferometer, based on an atom chip [22], over a range ofmomentum splitting and separation distances
allowed by the resolution of our imaging system (up to a differential velocity of∼10 mm s−1 after splitting and
separation of∼4 μm). For this rangewe show amulti-shot visibility (ameasure of stability) larger than 90%,
corresponding to a phase instability smaller than 0.45 radians.We analyze the sources of instability and compare
to theoreticalmodels. In addition, we present a quantitative description of the interferometric sequence in terms
of relative phase-space coordinates (position andmomentum). Using this descriptionwe show that before
expansion and overlap thewave packets in the two interferometer arms are separated from each other by a
distance ofmore than an order ofmagnitude larger than their width, which proves a full separation of the two
interferometer arms.

The improved phase stability analyzed herewas already used to realize a self-interfering atomic quantum
clock [23], and to demonstrate a complementarity relation for such a clock interferometer [24].

The structure of this paper is as follows. In section 2, we describe the experimental procedure and define our
observable. In section 3we present the achieved stability of the interferometric signal and compare it to
theoreticalmodels, discuss sources of instability, and detail the optimization procedure that enabled the high
stability performance. In section 4we present a phase-space description of the interferometric sequence and in
section 5we conclude and discuss possible future developments.

2. Interferometer sequence and signal

2.1. Experimental procedure
In our spatial fringe interferometer the initial atomic cloud isfirst prepared in a superposition of two spin states,
which allows for splitting into twowave packets with differentmomenta using the SG effect, utilizing a pulsed
magnetic gradient generated by the chip. The twowave packets split in space during free propagation, and are
then rotated to have the same internal state. A secondmagnetic gradient pulse then stops thewave packets with
respect to each other at a certain relative distance between them. After expansion and overlap of thewave packets
spatial interference takes place, in away that is analogs to a double-slit experiment with light. This sequence is
different from a full-loop SGI [25, 26], where the two arms are kept with different spins throughout the sequence
and recombined in space to form a spin population signal.

The experimental sequence is shown infigure1.Webeginbypreparing aBECof about 104 87Rbatoms in the state
ñ = ñ∣ ∣F m, 2, 2F in amagnetic trap located about 90μmbelow the surfaceof an atomchip,where the chip extends

along thex–yplane at z=0.Theharmonic trap frequencies areωx/2π≈40Hzandωy/2π≈ωz/2π≈126Hz
where theBEChas a calculatedThomas–Fermihalf-lengthof∼9μmalongx and∼3μmalong y and z. The trap is
createdbya copper structure locatedbehind the chipwith thehelpof additionalhomogeneousbiasmagneticfields in
thex, y and zdirections (x is thedirectionof current on the chip, y the imaging axis, z thedirectionof gravity). TheBEC
is then released fromthe trap, and falls a fewμmunder gravity for adurationof 0.9ms.During this time themagnetic
fieldsused togenerate the trap are turnedoff completely.Only ahomogeneousmagneticbiasfieldof 36.7G in the y
direction is kept on to create an effective two-level systemvia thenonlinearZeemaneffect such that the energy splitting
betweenour two levels ñ º ñ∣ ∣2, 2 2 and ñ º ñ∣ ∣2, 1 1 isE21≈ h× 25MHz, andwhere theundesired transition to the

ñ∣2, 0 state is off-resonanceby - » ´E E h 18021 10 kHz.As the interferometer sequence is performedunder
conditionsof free expansion, the time scale formany-bodyeffects of atom-atominteraction aremuch longer than the
durationof the sequence, so that the experimentmaybedescribedby single-atomphysics (except for amean-field
repulsivepotential that determines the initial shape andexpansion rate of theBECcloud).
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Each atom in the atomic cloud is initially prepared in state ñ∣2 . The interferometer sequence begins by
applying a radio-frequency (RF)π/2 pulse (10 μs duration) to create an equal superposition of the two spin
states, ñ∣1 and ñ∣2 . Amagnetic gradient pulse (splitting pulse) of durationT1=4–16 μs creates a different
magnetic potential ( )V zmj

for the different spin statesmj, thus splitting the atomic spatial state into twowave
packets with differentmomentum. The gradient pulse is generated by running current on the atom chipwires
(see section 3.4 for details on the chip structure). Just after the splitting pulse, another RFπ/2 pulse (10 μs
duration) is applied creating awave functionmade of four wave packets (similar to the beam splitter described in

[20]): ñ º ñ  ñ∣ (∣ ∣ )p p x p x, ,1

2 1 0 2 0 , where ñ∣p x, represents awave packet withmomentump1,2 acquired by

states ñ∣1 and ñ∣2 during the splitting, and central position x (x0 is the position of the atoms during the splitting
pulse), and the plus andminus signs correspond to thefinal spin states ñ∣1 and ñ∣2 , respectively (see figure 1). In
this experiment we choose toworkwith themomentum superposition of thewave packets having spin ñ∣2 (while
disregarding the superposition of ñ∣1 , which after a second gradient (noted below) andTOF is at a differentfinal
position). The time interval between the twoRF pulses (inwhich there are only twowave packets, each having a
different spin) is reduced to aminimum (∼40 μs) to suppress the hindering effect of a noisy and uncontrolled
magnetic environment so that the experiment does not requiremagnetic shielding (see section 3.4 formore
details). Theminimal time between the twoRFpulses is determined by amagnetic ‘tail’ of the gradient pulse,
which at shorter times affects the resonance of the two-level system. A secondmagnetic gradient pulse of
durationT2 is designed to stop the relativemotion of the two state ñ∣2 wave packets. As bothwave packets have
the same spin state, themagnetic gradient can stop their relativemotion due to its curvature, as the slowerwave
packet is closer to the chip and hence experiences a stronger accelerating force relative to the faster wave packet
which is further away. After this second pulse, the atoms fall under gravity.We then take an absorption image of
the atoms and produce an optical-density image, as shown infigure 2.

In contrast to a full-loop SGI based on splitting and recombination of twowave packets with different spin
states [25, 26], the spatial fringe interferometer provides an interference signal even if the recombination
(stopping) is not precise, as long as themomentumdistribution of each of thewave packets is wider than the
momentumdifference after stopping. It follows that this interferometer does not require high precision of the
splitting and stopping operations but rather requires a high repeatability of these operations from shot to shot,
which is essential for high phase stability.

The RFπ/2 pulses are generated by an SRS SG384RF signal generator, and subsequently amplified by a
Minicircuit ZHL-3A amplifier.Wemodulate the RF power using aMinicircuit ZYSWA-2-50DRRF switch. The
RF radiation is transmitted through two copperwires located behind the chip. The chipwire current is driven
using simple 12 Vbatteries connected in series, and ismodulated using a home-made current shutter (IGBT
switch). The shot-to-shot charge fluctuations aremeasured to be δQ/Q=0.36%,whereQ is the total charge
running through the chip in a single pulse. The total resistance of the three chipwires is 13.51Ωwhen the chip
temperature has stabilized after a fewhours of running the system (see section 3.4 for further details about chip
design).

Figure 1.The longitudinal Stern–Gerlach spatial fringe interferometer (z position versus time). The signal ismade of spatial
interference fringes. For interference to occur the twowave packets aremade to have the same spinwith aπ/2 pulse and a selection of
two of the four emergingwave packets. This configuration does not require high precision and it ismainly sensitive to shot-to-shot
stability. Note that as the twowave packets have the same spin during the stopping, a long stopping pulse giving rise to an harmonic
potential is required. This creates a tight focus for thewave packets. Figure is plotted in the center-of-mass frame.
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2.2. Normalizedmulti-shot visibility
The visibility and phase of the acquired atomic fringe patterns are extracted from the absorption image by taking
a cut along z at the center of thewave packet envelope, and averaging along the x dimension to reduce noise. The
one-dimensional cut is thenfitted to a sine functionwith aGaussian envelope
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where thefitting parameters as the amplitudeA, the center position z0, theGaussianwidthσ, the fringe
periodicityλ, the interference fringes visibilityV, and the phasef. zref is afixed phase reference point (usually
taken to bemiddle of the image). Typical fitting results can be seen infigure 2.

The visibility of single-shot images in our experiment can be quite high (∼0.9 for certain experimental
parameters), while themain effect of instability is shot-to-shot fluctuations of the phase. In order to characterize
the stability of the phase, which is themain figure ofmerit in interferometry, we use as our signal themulti-shot
imagemade by summingmany interference patterns one on top of the otherwith no post-selection or alignment
(each interference pattern is a result of one experimental cycle), and dividing by the number of patterns (such
that themulti-shot is an average). Large phase noise and interference periodicity noise in a set of single-shot
imageswould result in a lowmulti-shot visibility, while lownoise corresponds to highmulti-shot visibility (see
section 3.3; a quantitative relation is derived in appendix A.2). Themulti-shot visibility is therefore ameasure of
the stability of the phase and periodicity. As in the single-shot case, we extract themulti-shot visibility by fitting
themulti-shot sum image to the formof equation (1) (see figure 2(C)).

In order to eliminate technical effects irrelevant to stability which affect themulti-shot visibility, we
normalize themulti-shot visibility to themean of the single-shot visibilities taken from the same sample. This
normalization eliminates effects such as visibility reduction due to an impure BEC (thermal atoms), lack of
perfect overlap between thewave packet envelopes in 3D, as well as imaging limitations such as inaccurate focal
point, limited focal depth, spatial resolution,movement of the interference fringes relative to the camera during
the image integration time (smearing), and so on. The normalizedmulti-shot visibilityVms is therefore given by

º á ñV V Vsms sum , whereVsum is the (un-normalized) visibility of themulti-shot sum image extracted from the
fit, and á ñVs is themean visibility of the single-shot images which compose themulti-shot image. The error bars
are estimated by

Figure 2. Single andmulti-shot interference fringes from the SG spatial fringe interferometer with a BEC and a thermal cloud, along
with a 1D cut showingfits to equation (1) (modified in (D)). (A), (B)Two typical single shot interference fringes using a BEC, for a
gradient pulse durationT1=14 μs. These are a sub-sample from the images used to generate themulti-shot image in (C). The shot-
to-shot fluctuations of the cloud position (with a standard deviation 122 μmin the sample shownhere) is due to fluctuations of
∼1 μmin the initial position of the released cloud. Thesefluctuations give rise to smearing of the envelope of themulti-shot image
without additional phasefluctuations, as explained in section 4. The average single-shot visibility of all images in the sample is
á ñ =V 0.37s , extracted from the fit of each image. (C)Amulti-shot image created by summing (averaging) 43 consecutive interference
images (no correction or post-selection), with a visibility ofVsum=0.33. Correspondingly, the normalizedmulti-shot visibility is

º á ñ =V V V 0.90sms sum (section 2.2), corresponding to a high stability of the interference phase and periodicity. (D)A single-shot SG
spatial interference pattern of a thermal cloud (zero condensate fraction), for a gradient pulse durationT1=4 μs. Single-shot
visibility is 0.65, 27% lower than the single-shot visibility of a BECusing the same experimental conditions (reference image is not
shown). This shows that our interferometer is robust to initial state uncertainties and does not rely on the inherent coherence of a
BEC.
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whereΔVsum is the fit error of the visibility of themulti-shot sum image,ΔVs is themeasured standard deviation
of the single-shot visibility (N being the sample size), and the third termunder the square root estimates the
expected relative standard error of the normalizedmulti-shot visibility due to the finite sample size (see
appendix A.2 for the derivation).

The normalizedmulti-shot visibility reflects shot-to-shot phasefluctuations between the single fringe
patterns in the sample. Phasefluctuations along the fringe axis includefluctuations of the global phasef of the
single-shot patterns (with standard deviation δf) and of the single-shot fringe periodicityλ=2π/κ (with
standard deviation δκ for thewave numberκ). As shown in appendix A.2, these fluctuations are related to the
multi-shot visibility by
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2
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whereσms is theGaussianwidth of themulti-shot pattern. Amore accurate theoretical expression for themulti-
shot visibility and an alternative definition ofVms based on amore generalmathematical procedure rather than a
fit is also given in section 3.3.

3. Stability analysis and optimization

In this sectionwe present the optimal stability of the SG spatial fringe interferometer in terms of the normalized
multi-shot visibility, which represents the stability of the interferometric phase, as defined above in section 2.2.
This optimal stability has been achieved after an optimization procedure described below in section 3.4. In
addition tomeasuring the optimal stability and in order to demonstrate themechanism leading to phase
instability we have also examined the effect of a specific source of instability—fluctuations of the splitting pulse
strength—on themulti-shot visibility. The experimental results are compared to a few theoreticalmodels
described in section 3.3.

3.1.Optimal stability
Figure 3 shows themeasured normalizedmulti-shot visibility,Vms, as a function of the splitting gradient pulse
duration. The upper data points (blue andmagenta circles) represent themulti-shot visibility after optimizing
the sequence, comparedwith predictions from several theoreticalmodels (see section 3.3).Wefind highmulti-
shot visibility (> 90%) formomentum splitting up to 10 mm s−1, the equivalent of∼2ÿk (whereλ=1 μmas a
reference comparing to laser pulse Raman interferometers), corresponding to a high stability of the phase and
interference pattern periodicity. These results demonstrate the current stability limits of our interferometer.

In table 1we present the parameters used for each data point infigure 3. The free propagation timeTd
between the pulses and the stopping pulse durationT2 were chosen so as to optimize themulti-shot visibility by
minimizing the effect offluctuations in parameters of the interferometric sequence such as the initial trapping
position or the stopping pulse duration, as detailed in section 3.4.

In table 1we also show somewave packet parameters calculated from the experimental parameters or by
using equations (11), (12), and (16) in section 4.We compare the experimental and theoretical values of thewave
packet separation, d, at the end of the stopping pulse. The experimental value of d is calculated by substituting
themeasured spatial period of the fringesλ into d=hTf/mλ, whereTf is the TOF (equation (16)). The
theoretical value of the separation is calculated from equation (12) by using the experimental parameters, with
an estimated valueω=2π×800 Hz for the stopping pulse curvature, averaged over the range spannedwhile
the atomsmove (see section 4). The theoretical result differs from the values calculated from the fringe
periodicity by nomore than 4%.The separation d is larger than theminimal Gaussianwave packet widthσmin by
a factor 8–33. Thisminimumwave packet size is due to the focusing power of the stopping pulse, as discussed in
section 4 and depicted infigure 1. The spatial separation beingmuch larger than theminimumwave packet
width is an experimental fact that is evident from the appearance ofmultiple fringes in the final interference
pattern (d/σmin roughly represents the number of interference fringes of a single pattern). However, this wave
packet separation is inversely proportional to the spatial period of the fringes,λ, and as our TOF is
experimentally limited by thefield of view of the camera and its sensitivity, it follows that thewave packet
separation is limited by the practical resolution of the imaging system and cannot exceed themaximal value of
about 4 μm. Such a separation corresponds to a fringe periodicity of about 25 μmfor the used values of TOF (as
our optical resolution is∼5 μm, and it is necessary tomeasure several points in order to distinguish a fringe
pattern). Such a fringe patternwas observed in our experiment (magenta point in the optimal stability data in
figure 3). Another effect limiting the observation of small-periodicity interference patterns is smearing of the
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pattern due itsmovement during CCD integration (imaging), an effect which increases as the periodicity
decreases. This effect combinedwith the limited optical resolution causes the single-shot visibility á ñVs to
decrease as the periodicity decreases (d increases), as seen in table 1.

Infigure 4we demonstrate the achieved stability after the optimization procedure, by showing the
interferometer phase stability overmore than 3 h of continuous data taking. Although the experimental
parameters are the same as those used for the data point ofT1=10 μs infigure 3, themulti-shot visibility for
this data set reduced toVms=0.89.We attribute this reduction to the fact that the data infigure 4were taken a
fewweeks after the optimization procedure leading to the stability of the data set used forfigure 3, such that
during this time long time drifts have driven the system away from the optimal stability parameters.

The shot-to-shot fluctuations leading to the reduction of visibility in the optimized interferometer sequence
followmainly from fluctuations in the interferometer device (i.e. gradient pulse durations and currents) and not
fromfluctuations of the initial BECpreparation. This is further demonstrated infigure 2(d), wherewe show a

Figure 3.Analysis of interferometer stability: normalizedmulti-shot visibility (ameasure of stability) versus splitting pulse duration
T1. Data show themulti-shot visibility of sequences thatminimize phase fluctuations (optimized stability—blue andmagenta circles),
and similar sequences where currentfluctuations were artificially injected into the splitting pulse in order to examine the effect of
instability (engineered instability—blue squares). The optimized stability data demonstrates the high stability achieved in the
experiment (themagenta point corresponds to the largest obtainedwave packet separation of 4 μm). Dashed and solid lines show
predictions of several theoreticalmodels (see section 3.3 for a description). The timings are detailed in table 1. The raw data for the
T1=14 μs optimized stability data point is shown infigure 2. Error bars includefitting errors for eachmulti-shot pattern, standard
error of themean (SEM) of single-shot visibility, and uncertainty due to the finite sample size (equation (2)), and do not account for
long termdrifts.

Table 1.Parameters of the interferometer data points infigure 3:T1,Td,T2, andTOF are time durations of stages of
the interferometer sequence (as defined in figure 1). á ñVs is themean single-shot visibility for each data set. The
separation d achieved during the sequence is calculated from the experiment using the observed periodicity of the
interference patternλ (equation (16)), and theoretically by the analytic equation (12), using the experimental
parameters, with an estimated effective harmonic frequency ofω/2π=800 Hz. The scaling factor ξ describes the
squeezing in phase space (see section 4, equation (11)), andσmin describes theminimal wave packet width at the
focal point (equation (15)). Note that the initial wave packet width isσz,0=1.2 μm [25]. The last columndescribes
the parameters of the large wave packet separation sequence (magenta data point infigure 3). Same parameters were
used for both the optimized stability and the engineered instability data (expect for the last column, used only in the
optimized stability case).

T1 (μs) 4 6 8 10 12 14 16 10

Td (μs) 116 174 132 90 130 106 114 600

T2 (μs) 200 150 180 220 200 200 200 70

TOF (μs) 6760 6750 8760 12 760 12 738 13 810 13 800 21 450

á ñVs 0.75 0.52 0.44 0.42 0.45 0.37 0.29 0.34

No. images 40 45 42 64 41 43 47 45

exp. d (μm) 0.55 0.98 1.14 1.31 1.66 1.92 2.25 3.93

theo. d (μm) 0.57 0.99 1.19 1.37 1.79 1.94 2.21 3.90

Scaling factor ξ 1.16 1.34 1.21 1.11 1.21 1.13 1.12 3.36

σmin (nm) 68 79 71 65 71 66 66 190
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single-shot SG spatial interference pattern of a thermal cloud (zero condensate fraction), instead of a BEC. The
high single-shot visibility proves that our interferometer is robust to initial state uncertainties and does not rely
on the inherent coherence of a BEC. Since a thermal cloud has a larger initial size (compared to a BEC), each part
of the cloud feels a different force due to the nihomogeneous gradient (nonlinearmagnetic field pulse), causing a
wavelength chirp of the resulting interference fringes. To account for this effect, we fit image figure 2(d) by
modifying the argument of the sine function in equation (1) to f + - + -p

l
( ) ( )z z k z z2

ref 1 ref
2, where the

parameter k1 represents thewavelength chirp.

3.2. Engineered instability
Let us now examine the effect of a single source of instability, namely, fluctuations of the chip current during the
splitting of the atoms, on the instability of the interferometric phase and its consequent effect on the normalized
multi-shot visibility. In order to demonstrate this effect we have engineered artificialfluctuations of the current
and examined the resultant suppression of themulti-shot visibility. The engineered instability data is presented
infigure 3 (blue squares).

The engineered instability data was produced by changing the chip voltage driving the splitting pulse using a
voltage stabilizer circuit, with corresponding variable values of chip current, and recording several experimental
cycles for each value of the current. The stopping pulse current was kept constant. Figure 5 shows the resulting
single shot interference phase as a function of the applied chip current during thefirst gradient pulseT1, where a
clear linear relation to the applied chip current is seen. These data are used to produce the engineered instability
data infigure 3.

The engineered instabilitymulti-shot fringe patterns are produced by summing over themany single-shot
images composing figure 5, with different values of the splitting pulse currents. In order to properly emulate the
spectrumof natural noise, the averaged image is obtained by taking aweighted average of single-shot images
such as to create a normal distribution of currents, where its width is set to δI/I=15.47 mA/860 mA=1.8%.
As the phase is linear with the applied current, such a distribution corresponds to a normal distribution of
phases. Summingmultiple phases and periodicities causes a chirp of the interference periodicity, and a spatial
chirp of the interference visibility. Due to these chirping effects, we cannot extract the visibility of thesemulti-
shot images by fitting the pattern to equation (1). See appendix A.1 for an explanation of the visibility extraction
process.

Since the engineered instability data presented infigure 3were taken a fewmonths after taking the optimized
stability data, the same experimental parameters gave normalizedmulti-shot visibility 2%–10% lower than the
original data, due to long termdrifts. To suppress the effect of this drift on the engineered instability data, we
normalized eachmeasurement to a corresponding one using the same experimental parameters, inwhich zero
noise was added (i.e. the chip current was held constant throughout themeasurement). Normalization is done

Figure 4. Interferometer phase stability over a few hours: phase as a function of time, forT1=10 μs,Td=90 μs, andT2=220 μs.
The standard deviation of the phase is 0.37 rad, and the normalizedmulti-shot visibility isVms=0.89 ± 0.03. Evaluating equation (3)
with the experimental parameters d p dl l= =·k 2 26362 [1/m] and s m= 170 mms , we obtainVms=0.851. The small
discrepancy between the experimental and theoretical values is probably due to correlations between center position and the
periodicity and phase (see appendix A.2 for discussion). Inset: a polar plot of phase versus single-shot visibility (shown as angle versus
radius).
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by dividingVms of the engineered instability data byVms of the reference zero-added-noise data (takenwithin the
same data set). The result of such a normalization is that only the injected noise affects the results.

One can see that the error bars of the engineered instability data infigure 3 aremuch bigger than those of the
optimized stability data.We explain this by noting that the error bars are estimated using equation (2), inwhich
the third termunder the square root estimates the expected relative standard error of the normalizedmulti-shot
visibility due to thefinite sample size (equation (A13)), and is given by -( ) ( )V NV1 2ms

2 2
ms
2 . Since this factor

grows larger asVms approaches low values, it results in a large error estimation, evenwhen the number of single
shotsN is high (N=138–267 for the engineered instability data).

3.3. Theoreticalmodels
For generating the theoretical curves infigure 3we have used numerical and analyticalmodels. As can be seen, all
models show good agreement with both optimized stability and engineered instability data sets.

The single-particle splittingmodel (dashed and solid green lines infigure 3, for the optimized stability and
engineered instability runs, respectively) is a straight-forward numerical quantum simulation of a noisy single-
particle splitting process similar to the splitting done in our experiment. The validity of thismodel is based on
the fact that the stopping pulse is optimized for completely stopping the relativemotion of the twowave packet
centers, and that themajor source of shot-to-shot fluctuations is in the splitting pulse of durationT1. In this case
the interference fringe patterns observed after a longTOF are a scaled (magnified) copy of the interference
patterns formed just after the splitting pulse as a result of the differential phase gradient imprinted on the initial
wave-packets of the two spin states (equivalent to a differentialmomentum transfer), as shown in section 4.
Therefore thismodel takes themulti-shot visibility of the fringes formed just after the splitting pulse as
representing the visibility expected to be observed in the actual experiment. The relative fluctuations of the
magnetic field amplitude during splitting are assumed to have aGaussian distribution, with a standard deviation
of δB/B (for zero noise in the splitting pulse timing, this would be equal to δI1/I1, where I1 is the current of the
splitting pulse). The Schrödinger equations for the evolution of the twowave packetsψ1(z, t) andψ2(z, t),
corresponding to the two spin states, are solvedmany times for different values of δB/B and the resulting
interference patterns are summedup to yield amulti-shot pattern, which is thenfitted to the formof
equation (1) to extract themulti-shot visibility. The values used for δB/Bwere 0.69% and 1.8%, respectively for
the optimized stability and engineered instability data. Thefirst value was chosen to produce a fairfit for the data,
while the second is the experimental value used for δI1/I1 when producing the added noise. The agreement of
this simplifiedmodel with the experimental results demonstrates the sensitivity of our interferometer to the fine
details of themagneticfield and its fluctuations during the splitting.

TheGaussian fringemodel (dashed and solid black lines infigure 3, for the optimized stability and
engineered instability runs, respectively) is an analytical phenomenological model of fringe patterns assuming
Gaussianfluctuations of three parameters characterizing the single-shot fringe patterns: phasef, wave-number

Figure 5. Interference phase as a function of the applied chip current during thefirst gradient pulseT1, used to produce the engineered
instability data in figure 3. The phase data has been shifted vertically for clarity. The phase is clearly linearwith the applied chip
current, andwe also confirm that the slope divided byT1 of all curves is equal within error bars, as would be expected from theory. The
mean slope divided byT1 is f¶ ¶ =I T 6.49 rad1 1 A−1 μs−1.
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κ≡2π/λ and center position z0 (see equation (1)). The standard deviations of these parameters are
correspondingly denoted by δf, δκ, and δz. In appendix A.2we show that, regardless of the source of these
fluctuations, such an assumption leads to the following form for themulti-shot visibility:

s dk
=

-

+

df
s dk+

⎡⎣ ⎤⎦
( )V

exp

1
, 4ms

1

2 1

ms
2 2

2

ms
2 2

where s s d= + zms
2 2 is theGaussianwidth of themulti-shot fringe pattern, withσ being thewidth of the

single-shot pattern as in equation (1). Although thismodel does not rely on the assumption of optimal stopping
as in the previousmodel, the specific formof equation (4) is obtained for the case where the phase andwave-
numberfluctuations are correlated, which is true at least in the case of the engineered instability data, where the
main source offluctuations is current instability during the splitting pulse. Since the fringes observed after TOF
are a scaled picture of themicroscopic fringes created just after the splitting pulse (section 4), wemay replace all
the parameters in equation (4)with the corresponding parameters of themicroscopic imprinted fringes, where
δκis thewave-number fluctuationwhich is equal to the fluctuation of the differentialmomentum transfer ÿk
(k=0.9 (μm μs)−1×T1(μs), δz=1 μmcorresponds to the initial trapping position fluctuations and
σ=1.2 μmis theGaussianwidth of the initial BEC cloud). The relation between these fluctuations is then
δf/δκ=zi, where zi is the distance of themean atomic cloud center from themagnetic field quadrupole center
during the splitting pulse. The theoretical curve of the engineered instability data infigure 3was calculated by
using equation (4) assuming zi=5 μm, and usingσms=1.56 μm (wave-packet width+ initial position
uncertainty), and δκ/κ=1.8% (value of the inducedfluctuations). For the optimized visibility data, whereVms

is high, the correlation between the phase andwave-number fluctuations is not important, as the theoretical
expression forVms can be approximated by equation (3) regardless of this correlation. In this case if we assume a
relation between δκ and δf as abovewe need to take δκ/κ=δf/f=0.69% in order to reproduce a fairfit to
the data. This value for thefluctuations is about twice higher than the independentlymeasuredfluctuations of
the current× pulse duration =Q I T1 1 1of δQ1/Q1≈3.6×10−3 in the splitting pulse. The discrepancymay be
attributed to the fact that an important source offluctuations is also the stopping pulse, whose contribution to
thefluctuations is not known from thismodel.

Thewave-packet propagationmodel (dashed and solid red lines infigure 3, for the optimized stability and
engineered instability runs, respectively) uses a semi-analyticalmethod inwhich the three-dimensional
trajectory of each of the twowave-packet centers is calculated by solvingNewton’s equations ofmotion in the
presence ofmagnetic forces and gravity along thewhole interferometric sequence: from trap release to
observation after TOF [27]. In the center-of-mass frame of eachwave packet we derive thewave-packet
evolution by taking a quadratic approximation for themagnetic atomic potential and solving for the scaling
factors describing thewave-packet sizes along the three axes [28–30]. This allows to reconstruct thewave
packets’ shape at themeasurement time and hence the shape of the interference fringes at each experimental
realization. Thismethod allows to introduce fluctuations of the current, timing or positions of thewave packets
at any part of the interferometric sequence. Infigure 6we show a comparison between the results of thismodel
and the experimental results for the final position and interference wavelength (periodicityλ). One can see that
our numerical wave-packet propagation simulation estimates the basic parameters of the interferometer with an
accuracy of 1%. For the optimized stability data themodel assumes relative current fluctuations
δI1/I1=δQ/Q=0.36%during the splitting pulse (using the independentlymeasured value of the relative
chargefluctuations δQ/Q), and δI2/I2=0.05%, during the stopping pulse. As thefluctuations in the stopping
pulsewere not directlymeasured, we use a number that best fits the experimental data. The fact that the stopping
pulsefluctuations are smallermay originate from the decreasing difficulty to generate stable long duration pulses
relative to short duration pulses, e.g. since timing jitter becomes less dominant for longer pulses.

For the engineered instability data we show a theoretical curve calculated by using the induced fluctuations
(δI1/I1=1.8%) during the splitting pulse. The numerical visibility was normalized to themulti-shot visibility of
simulated fringe patterns whosefluctuations are purely due to initial position fluctuationsΔzinitial of 1 μm
(standard deviation) around z=87.5 μmfrom the chip.

3.4.Optimization and suppression of instability
Amajor source of phase noise for the interferometer are the shot-to-shot current fluctuations in the chipwires,
which causefluctuations of themagnetic field energy during the time between the twoπ/2 pulses, inwhich the
twowave packets occupy two different spin states [20]. The previous realization of the interferometer used a
single wire on the atom chip to generate the requiredmagnetic gradients. This setup showed limited stability in
the phase and periodicity of the resulting interference fringes [20].

To address this problem,we have designed and fabricated a new atom chip. In the newdesign, themagnetic
gradient pulses are generated by three parallel goldwires (along x) located on the chip surface (seefigure 7),
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which are 10 mm long, 40 μmwide and 2 μmthick. Thewires’ centers are separated by 100 μm, and the same
current runs through them in alternating directions, creating a 2Dquadrupolefield (in the yz plane)with its
center at z=98 μmbelow the atom chip. The phase noise is largely proportional to themagnitude of the
magnetic field responsible for the gradient [20], whereas thefluctuations in the stable current in the external
coils giving rise to the homogeneous biasfield (along y) are relatively small. As themain source ofmagnetic
instability is in the gradient pulse originating from the chip currents, positioning the atoms near themiddle
(zero) of the quadrupolefield created solely by the three chipwires 98 μmbelow the chip surface reduces the
phase noise (see figure 7 formore details).

Let us note that as the durations of our interferometer operation andwork-cycle are 100 μs (without TOF)
and 60 s respectively, and aswe take data for several hours in each run, we believe we are sensitive tofluctuations
with frequencies lower than about 10 kHz. As the shortestmagnetic gradient pulse is 4 μs, wemay even be
sensitive to frequencies up to 100 kHz. This captures the dominant part of the 1/f (flicker)noise of electronic
systems.

In addition to thenovel chipdesign,wehave applied, as shown infigure8, several optimizationprocedureswhich
aim tominimize thehindering effects offluctuations. First, infigure 8(a)weoptimize the splittingposition tobe close
to the quadrupole center, since this iswhere themagnitudeof thefield is smallest and consequently, as explained
previously, thefluctuations areminimized. Let us elaborate. The initial trappingdistancedetermines thepositionof
the atoms relative to themagnetic quadrupole createdby the chipwires during the gradient pulses. At a givendistance
-∣ ∣z zquad from thequadrupole center thedifferential phasefluctuations δf are proportional to the relative current

fluctuations, such that df m d d= -D = -∣ ∣( )m g BT k z z I IF F B 1 quad , where m= D ¢k m g B TF F B 1 is the
differentialmomentumkickduring the splittingpulse ( ¢B being themagneticfield gradient),μB is theBohr
magneton andΔmF=1.Herewehave assumed that themagneticfieldfluctuations are proportional to the current
fluctuations, d d d= ¢ - = ¢ -∣ ∣( ) ∣ ∣( )B B z z B B B z z I Iquad quad . Although thephasefluctuations δf at the average
positionof the center of the cloudduring the splittingmay vanish completely if the latter coincideswith the
quadrupole center, perfect visibility is not expected to be achieveddue to thefluctuations of thefield gradient itself
and thefinite size of the atomic cloud (6 μmedge to edge in theThomas–Fermi approximation), and the shot-to-shot
fluctuationsof the initial trappingposition (about±1 μm),as canbe seen fromequations (3) and (4). In addition,
visibilitymay also reducedue to imperfections inother stages of the interferometer sequence. Figure 8(a) shows the

Figure 6.Comparison between the interferometer experimental results and the numerical wave-packet propagationmodel. (A) Final
z position as a function of thefirst gradient pulse durationT1. (B)Residuals showing the difference between the experiment and the
simulation in (A). Themean absolute residual is 1.15%. (C)Periodicityλ of the interference pattern as a function of the first gradient
pulse durationT1. (D)Residuals showing the difference between the experiment and the simulation in (C). Themean absolute residual
is 0.97%. The lines in (A) and (C) are notmonotonic since these are different points in amulti-dimensional space:T1 is not the only
parameter that changes between each point, but alsoTd,T2, and the time-of-flight, due to the complex optimization process. Lines are
therefore only a guide to the eye. Experimental error bars represent standard error of themean.
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dependenceof thenormalizedmulti-shot visibility on the initialwave-packet positionwhen theotherparameters are
kept constant. Ideally the visibilitywouldbemaximalwhen the atoms are closest to the quadrupole center
at=98 μm,namely,whenwe release the atoms fromthe trap at ztrap=94 μm (taking into account a 4 μmfalling
distance beforewe apply the splittingpulse).However, the initial positionof the atoms also affects themagnitudeof
themagneticfield gradient (related to the amountofmomentumÿk imprintedon the cloud) and thefield’s
curvature. This influences the stability of later stages of the interferometric process, such as relative stopping of the
twowavepackets by the secondgradient pulse, so that themaximal visibilitymay require someadjustment relative to
the abovepoints. In thisworkwedidnot performa full combinedoptimizationof the initial trappingposition and
thedelay and stoppingpulse durations, but rather used a constant trappingpositionof about ztrap=87.5 μmand
optimized thedurationof thedelay and stoppingpulses, as described in the following.

Above, we discussed the optimal atom position at the start of the interferometer. An important effect we
need to consider next are shot-to-shot fluctuations in the latter position. These fluctuations are induced by
uncertainties in the position of themagnetic trap in which the BEC is formed.We note that if the stopping
parameters are optimized, we expect the initial position fluctuations of the atoms to play a veryminor role in
the finalmulti-shot visibility. As shown in section 4, if the stopping pulse is designed to almost completely
stop the relativemotion of the centers of the twowave packets, then the final shape of the fringe pattern,
including its final position, is the same as the shape of the fringe pattern formed just after the splitting pulse,
up to a scaling factor. As the phase of the fringes after the splitting pulse, namely the position of their peaks,
are determined only by themagnetic field gradient and not by the envelope of the initial wave packet, shifts in

Figure 7.Quadrupole field generation and its benefit. (A)Apicture of the atom chip (golden surface) on itsmount, where copperwires
used for generating the BEC are visible behind it. Note that its orientation in the experimental setup is face down. (B) Schematic
diagramof the chipwires which are used to generate the quadrupole field.Wires are 10 mm long, 40 μmwide and 2 μmthick. The
separation of thewires’ centers is 100 μm, and the direction of the current I alternates fromonewire to the next. Thewires, being
much smaller than the chip, are hardly visible in (A). (C)The constant biasmagnetic field (dashed black line) is necessary in order to
create a robust quantization axis for the experiment aswell as an effective two-level systemby inducing a nonlinear Zeeman shift. The
bias field is produced by external coils while the chipwires produce the gradients giving rise to themagnetic force. One can see that the
totalmagnitude of themagnetic field produced by a quadrupole and a bias (red line) is smaller than that produced by a single wire and
a bias (blue line, as used in [20]), while the gradient (at∼100 μm) is the same. Since the phase noise is largely proportional to the
magnitude of themagneticfield created during the splitting pulse [20], positioning the atoms near the quadrupole center (98 μm
below the chip surface) reduces the phase noise.We also showhow an opposite gradient is produced by an opposite current in the
three chipwires.
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the initial position of the wave packets before the splitting kick will not cause any phase shifts. It follows that
the positions (phase) of the observed fringes are expected to be independent of the initial wave-packet
position, even if the envelopes of the fringe patternsmove, as was reported in previous work [20].

Following the above understanding, infigure 8(b)we optimize the stopping of the relative wave-packets’
motion after the free propagation timeTd. For afixed initial trapping position (which is relatively close to the
quadrupole center)we change the second gradient pulse timeT2 for several propagation timesTd. For each value
of the propagation timeTd, maximal normalizedmulti-shot visibility is observed at a corresponding stopping
timeT2 for whichwe believe that a full stopping of the relative wave-packetmotion is achieved.

Next, to suppress noise from the 50 Hz electrical grid noise which is coupled to the atoms through the bias
coils’ current supplies, we synchronize the experimental cycle start time to the phase of the electrical grid sine
wave (this is done by using a phase-lock loop, which sends a trigger to the experimental control). In our
experiment this significantly reduced this type of noise (seefigure 8(a)).We further suppress this noise source by
minimizing the time inwhich thewave packets have a different spin to 40 μs.We have found that themulti-shot
visibility is not significantly sensitive to this time interval as long as it is below 200 μs. As the achieved high
normalizedmulti-shot visibility corresponds to phase fluctuations of less than 0.5 rad for this time period, we

Figure 8.Optimization: (A)normalizedmulti-shot visibility as a function of the initial trap distance from the atom chip. The other
experimental parameters are (T1,Td,T2)=(6, 104, 130) μs and (12, 158, 180) μs.Minimal visibility reduction due tomagnetic
fluctuations during splitting is expectedwhen the splitting position (4 μmfarther than the trapping distance due to free fall between
trap release and gradient time) is closest to the quadrupole center (at z=98 μm). In practice the visibilitymay also be governed by
imperfections in the later stages of the sequence if the parameters are not optimized for eachmeasurement point. The low visibility
data in this plot shows the consequence of lack of synchronizationwith the 50 Hz electricity grid. (B)Normalizedmulti-shot visibility
as a function of the stopping gradient pulse durationT2 for a given splitting pulse duration (T1=6 μs) and a few values of free
propagation time between the gradient pulses,Td.We expectmaximal visibility when the stopping pulse is designed tomost accurately
stop the relative wave packetmotion (T2=acot(ωTd)/ω, see equation (9)). Corresponding nominal optimal values forTd=124, 174
and 224 μs areT2=202, 170 and 144 μs, respectively, for an estimated curvature ofω=2π×800 Hz.
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can evaluate an upper limit for thefluctuations of the homogeneous biasfieldB0 during this time period. For the
used value ofB0= 36.7G, the total accumulated phase difference between states ñ∣1 and ñ∣2 isf=μB
B0T/(2ÿ)=3.2×104 rad.We thus obtain relative fluctuations of δB/B=δf/f; 10−5.

Additional sources of phase noise are phasemeasurement uncertainty (due to thefitting procedure) of about
0.1 rad, and chip-to-camera relative position fluctuations (along the direction of the fringes). For the latter,
assuming a shot-to-shot instability of 1 and a 31.4 μm interference pattern periodicity, these vibrationswould
create a 2π/31.4=0.2 rad phase instability.

Finally, let us note that while each data point infigure 3 is a result of continuous data taking in long sessions
ranging in duration from an hour to several hourswith no post-selection or post-correction, long termdrifts of
magnetic fields or voltages in the system (e.g. due towarming up of the copper structure under the chip, the coils
or the electronics)were addressed by stopping the data taking and re-optimizing the interferometer. These drifts
are not taken into account in the error bars presented infigure 3.

4. Interferometric sequence in phase space

In order to gain a qualitative and quantitative understanding of the interferometric sequence in our experiment,
we use the position-momentumphase-space description in theWigner representation. This description is
completely equivalent to the Schrödinger picture in the case where the initial state is a single-particle pure state
and allows a generalization to the case of an initialmixed state (e.g. a thermal distribution). This enables us to
derive some quantitative analytical estimations of thewave-packet width and separation during certain parts of
the sequence, as we showbelow.Our phase-space description of the atomic dynamics ismotivated by our
previouswork [31], where it was used to analyze the dynamics of an atomic cloud in an anharmonic trap.Our
treatment is different from a recent theoretical treatment of the SG experiment with phase-spacemethods [32],
in thatwe use a scalar distribution function to describe the atoms at the timewhere the twowave packets have
the same internal state.

The phase-space dynamics in the SG spatial fringe interferometer are demonstrated infigure 9. Thewave
function ismanipulated to be a superposition of twowave packets with the same spin just after the splitting stage,
such that the scalarWigner function representation is appropriate. If the gradient pulses are fairly well
approximated by a linear+quadratic potential then phase space dynamics is described by the following
Newton’s equations ofmotion

Figure 9. Interferometric sequence in phase space (Wigner function representation, (a)–(e)) and in real space (f)–(h). Positive values of
theWigner function are represented by red and negative values by blue. The initial singlewave packet (centered at p=0 and z=0,
not shown) is split into twomomentum components (a), giving rise to a spatial interference fringe pattern (upon projection onto the
position axis, shown in (f)). Red arrows correspond to actions driven by themagneticfield giving rise to the observedwave packet
position, whereas black arrows correspond to evolution due to free propagationwhich follows the present wave packet position in the
plot and giving rise to the next plot. (b) and (g): After some free propagation, thewave packets separate. A quadratic potential centered
at themiddle between the twowave packets performs a phase-space rotation and stops their relativemotion ((c) and dashed–dotted
green curve in (h)). After some free propagation the phase-space distribution of eachwave packet becomes alignedwith the
momentum axis (d) and thewave-packet size in real space isminimized (dashed red curve in (h)). After a long propagation time an
interference fringe pattern is formed ((e) and solid blue curve in (h)), which is a scaled picture of the initial fringe pattern shown in
(a) and (f).

13

New J. Phys. 21 (2019) 073040 YMargalit et al



w
=

- +

⎛
⎝⎜

⎞
⎠⎟( ) ( )

t

z
p

p m

m z F

d

d
, 5

2

where F is a homogeneous force (due to amagnetic gradient or gravity) andω is a harmonic frequency
determined by the curvature of the potential. The solution of such a dynamics for all phase-space points z and p
is obtained by separating the dynamics into the center-of-massmotion governed by the homogeneous force F
and themotion relative to the center ofmass, which is governed by the harmonic force. Inwhat followswe
concentrate on the second part of the dynamics—relative to the center ofmass—which determines the relative
position andmomentumof the twowave packets and the shape of each of them (expansion or focusing). From
here on the phase space variables z and pwill therefore denote the position andmomentum relative to the center
ofmass of the twowave packets and in this frame of reference we assume F=0.During a single interferometer
stagewith a time duration twewill assume for simplicity that the harmonic frequencyω is constant, so that
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After a short splitting pulse of durationT1, inducing amomentumdifference ÿk between the twowave
packets, they are are centered, in the center-of-mass frame, atmomenta p=±ÿk/2, while the effects of the
splitting pulse on thewave-packet shapes are neglected (sinceωT1= 1). During thismomentumkick the two
wave-packet centersmove to a distance  kT m41 from the origin of the center-of-mass frame.We set the time
to be t=0 at themiddle of the splitting pulse, such that the center positions = Z kt m2 and center
momenta = P k 2 at the end of the pulse (t=T1/2) are the same as if the twowave packets freely
propagated fromZ=0 at t=0with the samemomenta (capitalZ andP representingwave-packet centers).
This will be the starting point of our scheme (figure 9(a)).

After a timeTd of free propagation (free fall) the spatial distance between thewave packets is
 +( )k T T m2 d1 (figure 9(b)). The stopping pulse of durationT2 is represented by a harmonic potential of
frequencyω that rotates phase space such that the final wave-packet centers lie on the z axis (P=0, figure 9(c)).
Aswe see below, this pulse also serves to focus thewave packets into aminimal wave-packet size. After this pulse
the center coordinates become
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Note that the condition for stopping w w =T̃ Ttan 1d 2 does not depend on the splittingmomentumkick or
the initial center-of-mass position andmomentum, so that fluctuations in these parameters are not expected to
affect the phase of the final interference fringes as long as the stopping pulse is optimized.However, as we show
below,fluctuations of the splittingmomentumkick are expected to affect the distance between thewave packets
after stopping and consequently the periodicity of the interference fringesmeasured in the experiment.

We now look at the state of the atoms after another free-propagation time T̃d. As shown infigure 9(d), at this
time the slanted shape of the phase-space distribution of each of thewave packets alignswith the phase-space
coordinates and aminimal wave-packet size in the zdirection is achieved, given that the initial wave packets in
themiddle of the splitting pulse areminimal uncertainty wave packets. To show this, note that the combination
of the three operations: propagation for a time T̃d, harmonic stopping pulse for a timeT2 satisfying equation (9)
and another propagation time T̃d transforms general phase-space coordinates as
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This sequence leads to a complete rotation of phase space by 90°, while scaling the phase-space coordinates by
the squeezing factor
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At this time the spatial distribution consists of twowave packets atZ=±d/2, where
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andwhere in the limit of fast stopping relative to the propagation time w T̃ 1d the distance is  ˜d kT md .
Subsequent evolution after = +˜t T T2 d0 2 transforms phase-space coordinates as z→z+pτ/m, where

t = -t t0, so that the variance of the spatial distribution of eachwave-packet around its center position
Z=±d/2 is

d t
x
w

d
wt
x

d
t

d dá ñ = á ñ + á ñ - á ñ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( ) ( )z

m
p z

m
z p0 0 2 0 0 . 132

2
2

2
2

If at t=0 the two phase-space variables are not correlated ( d dá ñ =( ) ( )z p0 0 0) then thewave-packet width has a
minimumat τ=0 (t=t0), where the atomic cloud is focused.More specifically, if the initial wave packet at
t=0 is aminimal uncertainty state where the initial position andmomentumuncertainties satisfy

d d s sá ñá ñ º =( ) ( )z p0 0 2z p
2 2

,0 ,0 , then the distribution corresponding to each of the twowave packets at
time t0 is focused and has aminimal spatial width
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Note that if the initialmomentumkick is large enough to fully separate the twowave packets, namely, ÿk? σp,0,
then after the full stopping at time = +˜t T T2 d0 2 the distance between the twowave packets ismuch larger than
their size s s= d k 1pmin ,0 , allowing formultiple fringes to be observed.

More generally, correlations between the phase-space variablesmay exist, for example, when thewave-
packet starts to expand over a timeTi before the splitting, as in our experiment, such that
d d sá ñ = -( ) ( )z p T m0 0 i p T,

2
i

. In this case, whichmay be represented by a slanted phase-space distribution in

figure 9(a), minimumcloud size is achieved later at d d x w d= + á ñ á ñ( ) ( ) ( )t t z p m z0 0 00
2 2 2 . Theminimum

cloud size is then given by
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where the right term is for an uncorrelated distribution at = -t Ti.
After stopping the relativemotion between the twowave packets they are allowed to expand in free space for

a long timeTFuntil they overlap and form a spatial interference pattern at a large scale (figure 9(e)), which is
equivalent to applying -( ˜ )T T0, F d for sT mdF p f, , where s ws x= mp f z, ,0 is thefinalmomentum
width.We obtain a spatial fringe patternwith fringe periodicity


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16F

and an overall envelopewidth
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From equations (16) and(17) it follows that the periodicity and envelope size of the final fringe pattern are those
of themicroscopic fringe pattern formed during the splitting (having a periodicityλ=2π/k andwidthσz,0)
multiplied by a scaling factorωTF/ξ. The number of observed fringes is also the same in the two patterns

s l s p» =n k2 z f zfringes , ,0 .More generally the total experimental sequence is a rotation of phase space by
180°, such that thefinal pattern observed in the experiment is the same as themicroscopic pattern formed just
after splitting but scaled by a factorωTF/ξ.

The analytical results of the above phase-space analysis are used (see table 1) to predict somewave-packet
parameters for the gradient pulse durations used for the data points infigure 3. For comparisonwe present in
figure 10 numerical results of thewave-packet propagationmethod (see section 3.3) describing the evolution of
thewave packets in our interferometer. The process consists of an initial free-fall of the released atomic cloud for
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0.9 ms, then splitting forT1=10 μs, free-fall forTd=90 μs and a stopping pulse forT2=220 μs (same
parameters as for the optimalT1=10 μs data point infigure 3). The differentialmomentum applied during the
splitting isP/m=6.23 mm s−1 and the harmonic frequency during the stopping pulse ranges between
ω=2π×950 Hz and 650 Hz due to the fact that the center-of-mass of the twowave packets is accelerated by
themagnetic potential and gravity and reaches a distance of z≈124 μmfrom the chip after the stopping pulse.
By taking an average harmonic frequency w p» ´¯ 2 800 Hz we verify that the stopping pulse duration satisfies
the stopping requirement w w »¯ ˜ ¯T Ttan 1d 2 (where m= + =T̃ T T 2 95 sd d 1 ). Thewave-packet width (dashed
curve) reaches aminimal size ofσmin=0.072 μm, 139 μs after the end of the stopping pulse. Note that
according to the above phase-space analysis aminimal size of 0.065 μm is expected to be achieved m~ =T̃ 95 sd

after the stopping (taking the initial Gaussianwidth before expansion to be 1.2 μm). This gives a fairly good
estimation of theminimumwave-packet size, while the discrepancy in the focusing time can be attributed to the
mean-field repulsive force of atom-atom interactions, which tend to increase position-momentum correlations
during the evolution and is neglected in the phase-space analysis. The distance d between thewave packets (solid
line) at the focusing point turns out to be d=1.32 μm, compared to the analytical value d=1.37 μm (from
equation (12)) and themeasured value d=1.31 μm (see table 1, 4th column).

5. Conclusions

To conclude, we have demonstrated a high-stability spatial fringe interferometer based on SG splitting of cold
atoms by amagnetic field gradient. The atomic spin is used for controlling themotion of the atoms throughout
the interferometric sequence, butwhile the splitting is based on two spin states, it is followed by a stagewhere the
atoms in the two interferometer arms have the same spin state and the interferometric signal is based only on
spatial degrees of freedom. In this waywe avoid sensitivity tomagnetic noise, which gives rise to classical phase
uncertainties, as well as quantumdecoherence. The fact that we terminate the spin-path entanglement, also
means that we do not need to actively recombine the paths, a procedure very sensitive to experimental
imperfections [25], as we can simply get interference by allowing thewave packets to expand until they overlap.

We have analyzed the experimental results of the interferometer using several theoreticalmodels, which
show good agreement. Thesemodels will be important for future experimental optimization procedures, which
can become faster andmore efficient. In addition, we presented a simple analytical phase-space description of
the interferometer.

Our analysis of the interferometric sequence shows that we have separated the two arms of the
interferometer to a distance larger by a factor of 8–33 than the atomicwave-packet width before thewave packets
at the two arms are allowed to expand, overlap and form interference fringes. Themaximal separation between
the interferometer arms in the scheme used in this experiment is not limited by the precision or stability of the
interferometer but rather by the restricted time offlight and the resolution of the optical imaging device.

Figure 10.Calculated distance between the twowave packets comparedwith thewave-packet size during the interferometric
sequence, for the parameters of theT1=10 μs optimal data point. The distance d (solid curve) starts to grow during the splitting pulse
(of durationT1, starting 0.9 ms after trap release) and becomes nearly constant after the stopping pulse (of durationT2). Thewave-
packet sizeσz (standard deviation, corresponding to a Thomas–Fermi edge to edgewidth of s2 7 z) grows after the trap release and
then reduces to aminimal size after the stopping pulse due to the focusing power of themagnetic pulses. The number of fringes is
determined by the ratio sd 2 7 z . The distance andwave-packet sizewas calculated using awave-packet propagationmodel.
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Within thewhole rangeofmomentumanddistance of separation thatwas implementedwehavedemonstrated a
multi-shot visibility ofmore than90%, corresponding to aphase instability of less than df ~ - =( )log 0.9 0.32
radians out of amaximumphasedifferencebetween the twoarmsof about∼400 radians for the longest splitting
pulse lengthofT1=16 μs. This corresponds to a relative phase uncertainty of δf/f 10−3. Themomentum
instability at the endof the sequence is found tobe less than d s~ - ~( )k log 0.9 3.2 mm−1 (using equation (3),
whereσ∼100 μmis thewidthof themulti-shot pattern),which is smaller by about 4orders ofmagnitude than the
maximummomentumsplittingof k∼14.5 μm−1 forT1=16 μs. These phase andmomentumuncertainties are of
the sameorder as themeasured relative current instability of δI/I; 10−3 for themagnetic gradient pulses in our
experiment.

The spatial fringe SGI is limited inmaximal spatial splitting, thus limiting itsmaximum sensitivity,
compared to an SGI inwhich the signal is spin population fringes. This limitation can be overcome by additional
accelerating and stopping stages. On the other hand, as explained, it exhibits a high level of robustness which
may enable the development of practical applications.

Thework presented in this paper proves beyond doubt that there is no strong inherent limit to the coherence
in SG splitting, in contrast to some suggestions [33, 34]. It also laid the groundwork to realize a working full-loop
SGI interferometer, as presented recently [25, 26]. The full-loop is analogous to the originally envisioned SGI
scheme and directly addresses the notion of precision of themagnetic fields, which is the topic of theHumpty-
Dumpty effect [25].
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Appendix. Calculation ofmulti-shot visibility

A.1. Generalized definition ofmulti-shot visibility
Figure 3 includes engineered instability data used to examine the effect of instability via themulti-shot visibility.
These data were obtained by injecting noise into the current driving the splitting pulse, and varying duration of
the splitting gradient pulse.

Varying the current generating thefirst gradient pulse affects both the phase and the periodicity of the fringes
(see equation (16)), causing two kinds of chirping effects on the outputmulti-shot image. Thefirst is a chirp of
the interference periodicity, i.e. the image is composed ofmultiple periodicities (in contrast to a single-shot
image or to a high visibilitymulti-shot imagewhich has only a single periodicity). The second kind is a spatial
chirp of the interference visibility, i.e. the visibility is position-dependent. Because of these effects, the visibility
of these engineered instabilitymulti-shot images cannot be extracted simply byfitting the pattern to equation (1)
aswe do in all other images, andwe need to adopt amore general definition of the visibility. Here we explain the
procedure of extracting the visibility of thesemulti-shot images.

Assuming our interference pattern is composed of an envelope (e.g. aGaussian)multiplied by some
oscillating function, one possible definition for the interference visibility is to take the Fourier transformof the
interference pattern. Inκ-space, the result is a sumof three terms: one centered around k = 0—representing
the envelope, and the two others at k k p l=  = 20 —representing the oscillating termsThe visibility can
then be defined as the ratio of amplitudes of the oscillatory components to the amplitude of the zero component:

k kº + + -[ ( ) ( )] ( )V A A A 00 0 , where k( )A represent the amplitudes of the Fourier transform at point k.
The visibility of the outputmulti-shot images is calculated according to this definition by using a numerical FFT
of eachmulti-shot image.

A.2. Theoretical expression
Herewe develop amathematical relation between the interference visibility (in its generalized definition
described above) and different experimental noise sources. These noise sourcesmay be studied by examining the
statistics of different features of the single-shot interference fringes, such as the central phase and periodicity and
herewewish to understand how this statistics determines one number—the stability criterion in this paper,
namely the normalizedmulti-shot visibilityVms.

The Fourier transformof a single interference pattern of the formof equation (1)µ s- -( )e z z 20
2 2

k f+ +[ ( )]V z1 coss 0 is
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Here the ratio between the sumof the two side peaks at k k=  0 and the central peak is the single-shot visibility
Vs, coincidingwith the definition of visibility arising from equation (1). For computing themulti-shot visibility
let us consider three kinds of shot-to-shot fluctuations: (a) phasef fluctuationswith standard deviation δf, (b)
wave-vector k0 fluctuationswith standard deviation dk, and (c) envelope center z0fluctuationswith standard
deviation δz. If thefluctuations of these parameters are not correlated thenfluctuations of the phasef reduce the
amplitude of the two side peaks by

df = df-( ) ( )V e . A2ms
22

This expression can be obtained by convolving equation (A1)with a normal distribution probability density
functionwithwidth δf. Periodicity fluctuations of the fringes broaden the side peaks of the sum fringes at k 0

so that theirmaximumamplitude is reduced. Periodicity fluctuations also introduce phasefluctuations through
the factors ke zi 0 0 in equation (A1), if the envelopes of the single-shot fringes are not centered at a constant
reference point that can be defined as z0=0 (which is also the reference point forf).We then obtain for the
amplitude of the two side peaks (up to a phase factor)

hs k k h s k k dk-  -  + ( )( ) [ ( ) )e e , A3z22
0

2 1
2

2 2
0

2 2
0
2

where

h
s dkº + ( )1

1 A42 2

is the broadening factor of the side peaks.
Fluctuations of the central position z0 affect the shape of the three peaks at k k= 0, 0 in the sameway and

do not affect the visibility (relative amplitudes) by themselves. However, as the position of the center of the
pattern appears in the expression in equation (A3) for the reduction of visibility due to periodicity fluctuations,
theremay be a combined effect of those two kinds offluctuations.Herewe assume that these twofluctuation
sources are not correlated and average over z0 with themean of z0 being á ñ =z 00 , corresponding to a choice of
the fringe pattern center as the reference point for the definition of the phase, we obtain

d dk há ñ = +k k h dk
k k

-  -
=

( ) ze 1 1z zi 2 2 2 20 0
2 2

0
2

0
. From equation (A3)we can obtain for the visibility due to

wave-vector fluctuations

dk
s dk
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+
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2 2

ms
2 2

whereσms coincides with the envelope size of themulti-shot pattern.
If thefluctuations of the fringe periodicity and phase are due to a common source, such as current

fluctuations of the splitting pulse in our experiment, then the phase fluctuations and periodicity fluctuations
should be regarded as correlated.We then assume that the phasefluctuations are proportional to the
momentumfluctuations as δf=ziδκ, where the proportionality factor zi in the case of the fringes formed just
after the splitting pulse in our experiment is the distance of the atoms from the quadrupole center (but it zi can be
another number in different situations). Then the normalizedmulti-shot visibility for the combined
fluctuations becomes

s dk
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Note that when thewave-vector fluctuations are small such that dks  1andwhen the reference position for
the phasemeasurement is chosen to be the center of the fringe pattern (i.e. z0=0) then both the expression for
correlated fluctuations in equation (A6) and the uncorrelated parameters (combination of equations (A2)
and (A5)) converge into the same result
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Note also that the size of the envelopeσ used above refers to the size of the single-shot cloud, whileσms

coincides with the envelope size of themulti-shot pattern. However, for the engineered instability data, where
themain source offluctuations is the splitting pulse, our phase-spacemodel teaches us that the final fringe
pattern appearing in themeasurement are a scaled picture of the atomnumber distribution just after the
splitting pulse. In that case we can interpretσ as the initial BEC cloud size during splitting, while themulti-shot

cloud sizeσmsmay refer to s d+ z2 2 , where δz are thefluctuations of the initial BEC cloud position
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(δz≈1 μm). This interpretation provides similar results as the one taking themeasuredwave-vector
fluctuations and cloud sizes as a basis for the calculation of the visibility.

If thefluctuations in phase, periodicity and center position are all correlated thenwe obtain

s dk dk d
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Such correlations do appear in our experiment due to the nonlinearity of the splitting and stopping gradient
pulses. An atomicwave-packet that is closer to the chip is subject to a larger force that pushes it further away
from the chipmore thanwhatwewould expect if the gradient was linear, so that atoms that are initially trapped
closer to the chip get a largermomentum splitting and appear further away from the chip at the time of
observation.However, the apparent visibility of the fringes, whenmeasured by fitting its shape to equation (1), is
larger than that predicted by the generalized definition of the visibility by a Fourier transform, due to the fact that
wave-packets with different periodicities and phases are not fully overlapping in space, such that destructive
interference between them is not complete.Wewould then expect the apparent visibility to be even higher than
that calculated above for the casewhere the center position fluctuations are not correlatedwith the phase and
periodicityfluctuations.

A.3. Standard error ofmulti-shot visibility
Let us now consider the standard error δVms(N) of themulti-shot visibilityVms(N) due to thefinite numberN in
a sample. For simplicity we consider only global phase fluctuations, such that themulti-shot visibility is
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By summing over the real part and imaginary part and separating the sum å f f-( )ej
i j k into the case j=k and

¹j k we obtain
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By taking an average over ensembles withGaussian distribution of the phases and using the identity
á ñ =f f fá ñ -á ñe e ei i 22

, the average over each of the -( )N N 1 terms in the sumover ¹j k becomes
= á ñdf-á ñ Ve ms
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andwe have
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When the distribution of phases is narrow and á ñ ~V 1ms the standard error of themulti-shot visibility is
small, but when the visibility is small the standard error goes to the limit d ~V N1ms .
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