
            

PAPER • OPEN ACCESS

Anomalous periodicity in superpositions of
localized periodic patterns
To cite this article: Omer Amit et al 2022 New J. Phys. 24 073032

 

View the article online for updates and enhancements.

You may also like
Enhanced light extraction from organic
light-emitting diodes using a quasi-periodic
nano-structure
Ju Sung Lee, Yong Sub Shim, Chan Hyuk
Park et al.

-

A predator–prey model with taxis
mechanisms and stage structure for the
predator
Jianping Wang and Mingxin Wang

-

Research on the vibration transmission
characteristics of quasi-periodic
impedance layered structure constructed
by magnetorheological fluid
Qianqian Si, Lei Wang and ZeBang Sun

-

This content was downloaded from IP address 108.17.70.122 on 04/01/2023 at 17:37

https://doi.org/10.1088/1367-2630/ac7cff
https://iopscience.iop.org/article/10.1088/1361-6528/aaf541
https://iopscience.iop.org/article/10.1088/1361-6528/aaf541
https://iopscience.iop.org/article/10.1088/1361-6528/aaf541
https://iopscience.iop.org/article/10.1088/1361-6544/ab8692
https://iopscience.iop.org/article/10.1088/1361-6544/ab8692
https://iopscience.iop.org/article/10.1088/1361-6544/ab8692
https://iopscience.iop.org/article/10.1088/1361-665X/ac6919
https://iopscience.iop.org/article/10.1088/1361-665X/ac6919
https://iopscience.iop.org/article/10.1088/1361-665X/ac6919
https://iopscience.iop.org/article/10.1088/1361-665X/ac6919


New J. Phys. 24 (2022) 073032 https://doi.org/10.1088/1367-2630/ac7cff

OPEN ACCESS

RECEIVED

10 February 2022

REVISED

26 May 2022

ACCEPTED FOR PUBLICATION

29 June 2022

PUBLISHED

21 July 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER
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Abstract
Interference between overlapping periodic patterns gives rise to important phenomena, such as
Moiré fringes, appearing when the patterns have different periods or orientations. Here we present
a novel phenomenon, applicable to both the classical and quantum regimes, where two
one-dimensional localized periodic patterns with the same period interfere to create fringes with
anomalous periodicity. We analyze the effect theoretically and demonstrate it with atomic matter
waves. When a central parameter of the system is scanned continuously, we observe a
discontinuous but piecewise-rigid periodicity of the resulting fringes. We show that this is a
universal phenomenon that emerges from a superposition of two spatially shifted localized
periodic patterns of any source or nature when they interfere with a global phase difference. The
rigidity of the spectrum becomes even more robust for a coherent superposition of
non-overlapping wavepackets, although the conventional interferometric visibility drops to zero.
The effect is expected to appear in space and time, as well as in the momentum distribution of
quantum particles.

Interference between overlapping periodic structures or waves gives rise to a variety of classical and
quantum phenomena. One example are Moiré patterns, which are a result of alternating constructive and
destructive interference between periodic patterns with a slightly shifted periodicity, or relative rotation.
Such patterns appear in many interesting contexts (e.g., [1]). While interference in general is the basis of
classical and quantum wave mechanics, it still remains a rich ground for new experimental findings and
theoretical interpretations. This has been made evident, for example, with the recent emerging field of
overlapping periodic thin layers and their effect on the electronic and magnetic properties of van der Waals
hetero-structures or correlated oxides [2–5]. Novel points of view regarding interference are also at the
heart of studies on the double-slit experiment [6], Bohmian mechanics [7], and weak values [8]. Most
relevant to this work, are intricate effects due to the overlap of localized wavepackets, for example in the
context of anomalous arrival times, where interference is an underlying mechanism [9–13].

Here we report on anomalous features arising from interference between localized periodic phenomena,
which have applications to a wide range of classical and quantum systems. In contrast to Moiré patterns, the
anomalous features of our system arise from interference between two patterns with the same period thus
having a constant phase difference throughout the patterns. Nonetheless, the phase of the combined pattern
shows a phase gradient due to the relative amplitudes of the two patterns which vary along the patterns.
This phase gradient gives rise to a new period of the combined pattern which exhibits surprising features.

Our experimental model-system utilizes two parallel interferometers, each creating its own periodic
fringe pattern. The interferometers use matter waves of ultracold atoms precisely controlled by an atom
chip [14], as described in figure 1.

The general system we have in mind is a superposition of two periodic one-dimensional patterns
(hereafter named constituents) displaced from each other by Δz and both having the same wavenumber κ
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Figure 1. Experimental sequence (schematic representation, not to scale): a BEC is prepared in state |2〉 ≡ |F = 2, mF = 2〉,
represented by the red line, and released from the magnetic trap (not shown). After a time-of-flight (TOF) of ∼1 ms an RF π/2
pulse (light blue) transfers each atom into an equal superposition of |1〉+ |2〉, where |1〉 ≡ |F = 2, mF = 1〉 is represented by the
blue line. The magnetic field gradient pulses are in pink. See text for more details. After a TOF of ∼10 ms, the expanded
wavepackets overlap and interfere with one another, forming two interferometric fringe patterns, one of the |1〉 state and one of
the |2〉. Our absorption imaging method is invariant to the internal state and so a sum pattern is formed on the charge coupled
device (CCD) image. Red and blue represent the two constituent periodic patterns, while purple represents the sum pattern.

and finite-size σ of their envelopes, which we describe by Gaussians. The superposition is described by

f (z) = e−z2/2σ2
eiκz+iθ1 + e−(z−Δz)2/2σ2

eiκ(z−Δz)+iθ2 . (1)

The complex function f(z) may represent a wave function of a quantum particle in a superposition state.
Alternatively, the real part of f(z) may represent a classical field or density variation, where the phases θ1, θ2

determine the positions of the maxima of the periodic functions (cosines) with respect to their
corresponding envelope centers. We are especially interested in the case θ1 = θ2, which appears, for
example, in phase-coherent sources or as a result of coherent splitting and non-dispersive propagation, and
is also a fundamental feature in some coherent sources, such as our cold-atom model-system. The phase
difference between the two constituents Δφ = κΔz, is a global phase independent of position z and hence
the interference between them is similarly constructive or destructive everywhere. The localized character of
the system is best defined by the number of periods, a dimensionless constant proportional to κσ (typically
3–5 in our model-system).

Our main observable is the periodicity wavenumber KS of the sum pattern in equation (1). In quantum
sources �KS represents the peak of the momentum distribution (most probable momentum) of the
quantum particles, and hence the following features reported for the spatial periodicity of the combined
interference pattern apply similarly to the momentum of quantum particles in a superposition state as in
equation (1).

By varying a system parameter that controls both Δφ and κ, we observe the surprising effect of rigid
periodicity, i.e. no variation of KS within certain ranges of the scan in which Δφ does not cross an odd
multiple of π, as demonstrated in figure 2. The observed rigidity is a result of an interplay between the
relative phase of the constituents and their period, as discussed below. This interplay is shown to be related
to a fundamental conservation law in the quantum system that generates the signals in our system. Between
these rigidity ranges, sharp transitions (discontinuities, jumps) appear in KS. Below we explain the origin of
the effects and show that at in the limit of high Δφ, where the two envelopes are completely separated, a
robust and uniform rigidity emerges in Fourier space, whereby all the jumps are of the same height.

The experimental procedure is depicted in figure 1. Our experiment begins by releasing a Bose–Einstein
condensate (BEC) of about 104 87Rb atoms from a magnetic trap below an atom chip. We initially prepare
the BEC in the state |F, mF〉 = |2, 2〉, and then create a superposition of the two spin states |2, 2〉 ≡ |2〉 and
|2, 1〉 ≡ |1〉 by applying a π/2 radio-frequency (RF) pulse. These two states constitute an effective two-level
system, as all other states in the F = 2 manifold are pushed out of resonance by the non-linear Zeeman shift
generated using an external bias field (see appendix A). A Stern–Gerlach interferometer (SGI) is then

2



New J. Phys. 24 (2022) 073032 O Amit et al

Figure 2. Anomalous pattern periodicity—rigidity and jumps: (a) the measured wavenumber KS (purple, as in figure 1) vs the
deceleration pulse duration, T2 (figure 1). The absolute value of the FT of the sum patterns (CCD images shown in the insets) is
calculated from the data, and the value of the maxima, KS, is presented. For values of T2 where a secondary peak is detected with
the relative intensity of at least 20%, two points are plotted with the dot size representing the relative intensity of each peak. The
error bars are calculated as the standard error of the mean (SEM) over several iterations. As can be seen, although σκ is constant,
more fringes appear in the CCD insets as T2 becomes smaller. This is due to the growing Δφ which is tantamount to a decreasing
overlap between the two constituent patterns. (b) Visibility of the interference pattern, V , vs T2. The minima in the visibility,
emphasized by the vertical dashed gray lines, correspond to the periodicity jump locations in (a). In both (a) and (b) the green
line represents the results of a complete numerical analysis of wavepacket propagation based on the exact experimental
conditions. For low values of T2, the simulation overshoots the observed visibility, as under these conditions 2π/κ is smaller, and
as the clouds are moving (free-fall), the limited optical resolution gives rise to smearing and consequently a smaller visibility.

implemented by using a series of two magnetic gradient pulses (gradients along the axis of gravity, z), which
are generated by running currents on the atom chip (more details on the setup can be found in reference
[15]). The first gradient pulse, of fixed duration T1 = 4 μs, splits the superposition into two momentum
components, which then freely propagate during a delay time Td. During this delay time the spin state is
manipulated by a π/2 RF pulse, after which the two wavepackets have equal amplitudes to be in spin state
|1〉. Then they are decelerated relative to each other by a gradient pulse of duration T2. While the first
gradient pulse separates the two wavepackets by a spin-dependent force, the second gradient pulse
decelerates the relative motion by applying an inhomogeneous force along z on the two wavepackets that
have the same spin state but are centered at different positions. The same gradient pulse applies a twice
stronger force on the two spin-|2〉 wavepackets and drives them away from the experimental region, so they
are ignored in this experiment. After the deceleration pulse, we apply a third π/2 RF pulse that duplicates
the pair of wavepackets of spin-state |1〉 into two wavepacket superpositions of |1〉 and |2〉. We then apply a
third gradient pulse of a fixed duration T3 = 30 μs. The spin-dependent force of the third gradient pulse
gives different momentum kicks to the two spin states such that after free-space expansion and overlap, two
interferometric fringe patterns translated from each other in space are formed. As our imaging is insensitive
to the spin state, we obtain on the CCD the sum image of the two interference patterns, whose positive
spatial-frequency part has the form of equation (1) with θ1 = θ2. Note that the inhomogeneity of the third
gradient pulse shifts the periodicities of the interferometric fringe patterns of the two spin states such that
they have slightly different wavenumbers κ1 �= κ2. However, the wavelength 2π/|κ1 − κ2| corresponding to
this difference is much larger than the size σ of the interferometric fringe patterns, such that Moiré effects
due to spatially varying phase difference between the two patterns are negligible and we may assume
κ1 ≈ κ2 = κ (see appendix B).

Figure 2 presents the measured wavenumber KS of the sum pattern, which is extracted from the Fourier
transform (FT) of the data, as a function of T2. The value of KS exhibits a clear rigidity, and singularity
points at which this value abruptly changes. The rather good agreement with the data of our numerical
simulation, in which care was taken to take into account all the experimental conditions (see appendix C),
indicates a good understanding of the experimental apparatus. In what follows we gain insight into the
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Figure 3. Emergence of anomalous periodicity: (a) two localized one-dimensional periodic patterns (blue and red), with
wavenumber κ and phase difference Δφ, join to create a sum pattern (purple) with wavenumber KS. (b) The phase of the sum
pattern (color code) projected on the outline of the two constituent periods. The phase gradient is not constant and has a
minimum value at the center, giving rise to a narrow FT peak at KS, which is different from κ (see text). At one edge, the phase of
the blue pattern dominates, as the amplitude of the blue pattern dominates, see (a), and at the other edge, the phase of the red
pattern dominates. (c) The sum pattern wavenumber KS (z-axis) vs κ (x-axis) and Δφ (y-axis), as calculated from equation (2).
κ and KS are in units of μm−1 × 0.1. The horizontal and vertical dashed grid-lines represent, respectively, values of constant κ
(1–4) and constant Δφ (integer multiples of 2π). The continuous black lines are equi-KS lines (1.0–5.0 in 0.5 increments). The
background is a projection on the κ = 4.5 (0.45 μm−1 plane, showing how KS changes with Δφ for constant κ and visualizing
the topography. The two parameters κ and Δφ may interplay to form the rigidity plateaus of KS around points where Δφ is an
integer multiple of 2π. This interplay is represented by the red curve, which shows the actual experimental trajectory giving rise
to the data in figures 2 and 4. This line is always parallel to the equi-KS lines except for the discontinuity (jump) points,
manifestation of the rigid periodicity. In the model presented here κσ is a constant. Specifically, we take the number of periods in
the system (edge-to-edge size 4σ) to have the independently measured value of Np = (2/π)κσ = 5.6.

universal origin of the observed effects and in particular how they emerge in our system from the
dependence of the model parameters κ and Δφ on the central experimental parameter T2.

The principles that stand at the basis of the effect and the general behavior of the model are depicted in
figure 3. As demonstrated in figure 3(a), the periodicity KS of the sum pattern is shifted from κ due to a
phase gradient which develops along the system. Because of the spatially varying relative magnitude of the
two underlying constituent patterns, at one edge of the sum pattern the phase of the first periodic pattern
dominates, while at the other edge, the phase of the second periodic pattern dominates. This gives rise to a
phase gradient which changes KS as a function of Δφ, for any κ, as demonstrated in figure 3(b) (see a
quantitative analysis in appendix D). The dependence of KS on T2 in figure 2, is understood as an interplay
between the fundamental parameters κ and Δφ of equation (1). The specific conditions formed in our
experiment and explaining figure 2, are depicted by the red trajectory in the κ–Δφ plane in figure 3(c). In
order to understand this interplay we need to elaborate on the crucial role of T2 in our experiment. On the
one hand it determines the periodicity κ of the interferometric fringes by controlling the spatial and
momentum difference between the same-spin wavepackets before they expand to form interferometric
fringe patterns. On the other hand, as it determines the absolute distance of the atoms from the chip during
the translation pulse, it influences the magnetic field gradient (as the gradient is not homogeneous) and
hence the differential momentum applied to the two spins, and this in turn, determines the final spatial
translation Δz and therefore the relative phase Δφ.

Let us also note that in our experiment κσ is a constant due to a general conservation law concerning
the unitary evolution of a pair of Gaussian wavepackets of the same spin in free space or in smooth
potentials (see appendix E). This law applies to our interferometric sequence following the splitting pulse
whose duration T1 is kept constant in the experiment. The quantity (κσ)2 + (Δz/2σ)2, where Δz is the
distance between the Gaussian centers, is a constant of the evolution, which is approximately equal to κσ at
the time of observation. This conservation is most vividly visualized by the evolution of the Wigner
function in phase space [16]. The unitary evolution during the interferometric sequence is nothing but a
phase space rotation with appropriately scaled phase space coordinates [15], hence the shape of the Wigner
function, including the number of periods Np = 2κσ/π, is constant (see appendix F).

Quantitative insight is obtained by comparing the experimental data to the model of equation (1) with
the experimentally measured parameters, as presented in figure 4. Good agreement with the data is
obtained. The model parameters κ(T2), Δφ(T2) and Np = (2/π)κσ = 5.6, are obtained by independent
measurements (appendix B). The Δφ corresponding to each jump are presented in the upper x-axis. The
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Figure 4. Comparison of the experimental data to the model of equation (1) with experimentally measured parameters. The
absolute value of the FT of the sum pattern (AFT), as a function of the deceleration pulse duration, T2, and the Fourier variable
K. The data, represented by a heat map, is the same as in figure 2. The contour map lines, representing equi-AFT lines, are the
result of the model. The dashed lines mark the intensity local maxima of the model. The model parameters κ(T2), Δφ(T2) and
Np = (2/π)κσ = 5.6, are independently measured (see appendix B). The maxima of both the model and the data were
normalized to 1. In the inset, the jump height as a function of the number of periods in our finite system. Each line represents a
different jump, classified by their Δφ. The jump corresponding to Δφ = π is expected to appear at T2 ≈ 300 μs, and is however
below our noise limit for detection.

inset extends the model to an arbitrary number of periods Np and shows that the magnitude of the jumps
in KS for each specific Δφ is determined by Np. For a large Np the jumps disappear, at which point a
smooth function of KS ≈ κ as a function of T2 is expected.

In figures 2–4 we extract KS numerically by finding the maximum of the absolute value of the positive
spatial frequency part (K > 0) of the FT (AFT) of the sum pattern. By Fourier transforming the model
function f(z) of equation (1) we obtain

AFT ≡ |F{f (z)}K = e−
1
2 σ

2(K−κ)2

∣∣∣∣cos

(
K

2κ
Δφ

)∣∣∣∣. (2)

The peak of the AFT is at KS = κ when Δφ = 2πn is an integer multiple of 2π, where the cosine function is
peaked at the same K = κ as the Gaussian peak. In general, when Δφ = 2πn + α, where −π < α < π, the
cosine peak shifts to K = κ/(1 + α/2πn), and therefore the peak of the AFT shifts to KS < κ or KS > κ,
depending on whether α is positive or negative, respectively (see appendix G for more details). Note that for
most of the data points of our experiment a similar wavenumber KS is obtained by fitting the real-space
sum pattern (of which equation (1) is only the positive-K part) of the CCD images to the form
ρ(z) = A exp[−(z − z̄)2/2σ̄2][1 + v sin(KSz + φ̄)], where z̄, σ̄ and φ̄ are the center position, effective width
and phase of the sum pattern, respectively, v is the visibility and A is a normalizable constant. This fitting is
valid as long as the two patterns forming the sum pattern significantly overlap.

Finally, the effects described above take quite a different and surprising form when applied to quantum
particles. Equation (1) may be used to describe the wave function of a quantum particle in a superposition
of two wavepackets. As demonstrated in figure 5, such a wave function may be readily obtained at the
output of a Mach–Zehnder interferometer. In this case the square of the AFT in equation (2) represents the
momentum distribution (or probability) of the particle. The result is especially interesting when we
consider a system where the source contains particles with a large range of input momenta but their
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Figure 5. Discrete peak momentum: (a) a quantum particle with peak momentum �κ, represented by a wavepacket with a
Gaussian envelope, enters a Mach–Zehnder interferometer and splits at the beam splitter BS1 into two paths with a length
difference Δz (for example, due to a different mirror configuration M1 vs M2 and M3). After recombination at BS2 the wave
function at each of the output ports is a superposition of two wavepackets whose centers are separated by Δz with a phase
difference Δφ = κΔz as in equation (1) with f(z) → ψ(z). This requires θ1 = θ2, which is fulfilled, for example, in propagation
in a non-dispersive medium (e.g., photons in vacuum). (b) Origin of peak momentum rigidity: the momentum distribution
P(K) ∝ |

∫
dz e−iKzψ(z)|2 (solid curves for two values of κ) is the square of the AFT in equation (2): a product of a Gaussian

envelope of width σ (dashed curves) and a cosine function cos2(KΔz/2) with Δz = 4σ. In both the top panel (κΔz = 9.8π) and
the bottom panel (κΔz = 10.8π) the dominant peak of the momentum distribution is at �KS ≈ 10π�/Δz (dotted
line)—almost independent of the input peak momentum �κ. (c) Momentum distribution (heat map) and most probable
momentum (solid curve), as a function of input momentum �κ where κσ = 8 is kept constant while κ is scanned. A discrete
spectrum of the peak momentum �KS emerges when Δz 
 σ (no overlap).

splitting and propagation involves a constant delay of one wavepacket in the superposition with respect to
the other, as it occurs in non-dispersive propagation. In this case the momentum distribution at the output
of the interferometer is expected to have discrete peak values �KS = 2πn�/Δz, as shown in figure 5(c) if the
delay generated by the interferometer is longer than the wavepacket width such that Δz 
 σ. This effect is
the universal and robust limit of the rigidity of periodicity observed in our experiment.

Our model may be used to describe the interplay between any two modulated pulses, with a similar
modulation frequency and number of periods. These could be, for example, sound or electromagnetic
waves, as well as more exotic phenomena. The anomalous features described above may be observed for any
phase-coherent source emitting pairs or trains of pulses, as long as there exist detectors with a bandwidth
wide enough to follow the oscillations within the pulses, or detectors that can measure directly the Fourier
spectrum of the pulses, or the momentum of the particles.
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Appendix A. Detailed experimental scheme

The experiment is based on 87Rb atoms cooled using a standard reflection-MOT apparatus. The atoms are
then loaded into an Ioffe–Pritchard magnetic trap, and forced evaporation cooling, using a RF knife, is
applied until degeneracy is reached. The BEC, containing ∼104 atoms, is released from the trap in the
|2〉 ≡ |F = 2, mF = 2〉 state, and the experiment is conducted during free-fall. The initial size and expansion
of the BEC after trap release are governed by atom-atom interactions, but as the cloud is relatively dilute
these interactions have a minor effect on the interferometric process and may be completely neglected when
the atoms expand to form large-scale interference patterns. The whole experiment is performed under a
constant bias magnetic field of ∼35 G which isolates an effective two-level system of |2〉 and
|1〉 ≡ |F = 2, mF = 1〉. The wavepacket is transferred into an equal superposition of the two internal states,
(|1〉+ |2〉)/

√
2, using an on-resonance RF π/2 pulse. The transition frequency of this two-level syste

is ∼25 MHz. By applying a magnetic field gradient pulse of duration T1 = 4 μs, the wavepacket is split into
two distinct trajectories with different momenta. We note that the values reported here for the duration of
the pulses are the values given to the experimental control of the apparatus, while the actual values are
systematically shorter by a few hundred nanoseconds. The magnetic field gradient originates from a current
of I = 1.1 A flowing along three parallel wires in alternating directions. This configuration of the wires
helps reduce the phase noise originating from the chip currents [15].

After the initial splitting pulse, the two wavepackets freely propagate for a time Td1 = 230 μs. During
this time we apply a second π/2 pulse which transfers each of the trajectories, previously in a pure state of
either |1〉 or |2〉 into an equal superposition of (|1〉 − |2〉)/

√
2 and (|1〉+ |2〉)/

√
2, respectively. The

wavepackets are then decelerated relative to one another by a second magnetic gradient field pulse of
varying duration T2, which causes the |1〉 components from each of the wavepackets to have roughly the
same momentum. The |2〉 components are ejected from the interferometer region-of-interest and are
ignored for the rest of this experiment. This decelerating is possible due to the non-linearity of the magnetic
field; that is, each wavepacket in internal state |1〉 feels different acceleration since the magnetic field
gradient is not constant in space. The same non-linearity also causes the wavepackets to go through a focal
point and then expand at an increased rate.

After the deceleration pulse, we apply a third and final RF π/2 pulse, creating two superpositions of |1〉
and |2〉. In total, our quantum system now consists of two spatially separated wavepackets, each in a
superposition of |1〉 and |2〉. The atoms freely propagate until we apply a third magnetic field gradient pulse
of duration T3 = 30 μs. The third pulse has the opposite polarity compared to the first two pulses, such that
the acceleration due to the magnetic field gradient is directed upward. By reversing the polarity of the third
magnetic field, we can achieve slightly longer measurements since the BEC remains in the field of view of
the CCD for a longer time. This third pulse imparts a differential phase Δφ and a differential position Δz,
on the two spin interference patterns. The timing of the third magnetic field gradient pulse is Td2 = 410 μs
after the start of T2.

The bias magnetic field is shut down 660 μs after the last magnetic field gradient pulse, after which the
wavepackets fall under gravity and expand for another 14 ms. At the end of the experimental cycle, we
image the interference pattern using a standard absorption imaging technique. Since the bias magnetic field
is turned off before the imaging pulse, our imaging beam is invariant to the two energy levels and can not
distinguish between |1〉 and |2〉. This measurement is repeated for different values of T2, and its results are
presented in the main text.

As auxiliary measurements, we repeat the same experimental sequence described above, where we
change the third RF pulse, of duration TR3 and Rabi frequency Ω, from ΩTR3 = π/2 to ΩTR3 = 0 or
ΩTR3 = π. Effectively, these two extra measurements, presented in figure 6, measure the periodicity of the
single-state interference pattern, κi.

7
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Figure 6. Single state interference pattern periodicity, κ. The experimental sequence presented in figure 1 is repeated twice, once
without the last RF pulse, ΩTR3 = 0 (blue) and a second time with the last RF pulse twice as long ΩTR3 = π (red). From these
measurements we get the single-state interference pattern. Error bars are calculated from the SEM. The solid lines are
phenomenological fits.

Appendix B. Data analysis

An example of the raw data can be seen in the insets of figure 2 and in figure 7. The analysis starts by fitting
a Gaussian function of width σ0 to the interference pattern. While the accuracy of this fit is limited, it gives
a rough estimate of the envelope function. Using these results, we subtract the Gaussian envelope from the
data and calculate the absolute value of the FT along the elongated axis of the interference pattern
(z, gravity). We cut the spatial frequencies lower than 1/0.9σ0. This removes the central peak of the FT.
While there is some redundancy in filtering the central peak (low-frequency cutoff and subtraction of the
envelope from the data), we found this method to give more consistent results. We now locate the two
highest maxima of the FT spectrum and calculate their relative intensity. We take the highest value as the
main peak, KS, and the second peak is recorded only if its relative intensity is at least 20%. These values are
plotted in figure 2(a).

To calculate the visibility of the sum pattern we fit the original data in real space to a sine function
multiplied by a Gaussian envelope

f1(z) = A e−(z−z̄)2/2σ̄2[
1 + v sin

(
KSz + φ̄

)]
+ c, (B1)

where A, z̄, σ̄, v, φ̄, and c are the fitting parameters. In this fit, we set the value of KS to be the main peak of
the FT. Two images from the CCD and the corresponding fits are presented in figure 7. From these results,
we take v to be the visibility of the interference pattern, plotted in figure 2(b).

For our model we fit the visibility, figure 2(b), to the function

v(T2) =
v0

2
cos

(
a

T2
2

+ φ0

)
+ c, (B2)

where c, v0, a, and φ0 are the fitting parameters. From the results of this fit we obtain the differential phase,
given by

Δφ(T2) =
a

T2
2

+ φ0, (B3)

where a = (163 ± 2) × 103 μs2 and φ0 = 1.3 ± 0.2 rad are the result of the fit to v(T2). We also fit each of
the single-state wavenumbers, plotted in figure 6, to the function

κi(T2) =
2πai√
T2 + bi

, (B4)

where ai and bi are the fitting parameters. The results of these fits are a1 = 0.175 ± 0.004 μm−1 μs1/2 and
b1 = −56 ± 1 μs for the case of ΩTR3 = 0 and a2 = 0.183 ± 0.004 μm−1 μs1/2 and b1 = −56 ± 1 μs for the
case of ΩTR3 = π.

For our model, presented in the main text, we use κ(T2) = 1
2 [κ1(T2) + κ2(T2)]. For the independent

measurement of Np, presented in figure 8, we use the aforementioned values for κ1(T2) and κ2(T2) together
with the values of σ̄(T2) extracted from the fit to equation (B1). We then calculate
Np(T2) = (2/π)κ(T2)σ̄(T2), and average the results to get Np = 5.61 ± 0.03.
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Figure 7. Two absorption images of the sum pattern as captured on the CCD, and the corresponding optical density as a
function of z. The optical density is fitted to a sine function multiplied by a Gaussian envelop (equation (B1)). (a) The sum
pattern at T2 = 123 μs as an example of a high visibility pattern with v = 0.76, width of σ̄ = 71 μm and
KS =

2π
44 = 1.4 μm−1 × 10−1. (b) The sum pattern at T2 = 142 μs as an example of a low visibility pattern with v = 0.29, width

of σ̄ = 92 μm and KS =
2π
59 = 1.1 μm−1 × 10−1.

Figure 8. The number of observable peaks Np = 2
π
κσ for the interference of a single spin state, either 1 (TR3 = 0) or 2

(TR3 = π).

Appendix C. Numerical simulation

The numerical simulation presented in figure 2, was performed by using the wavepacket evolution method
[15, 18], for a BEC under the influence of time-dependent potentials. After the final gradient pulse of
duration T3, there are four wavepackets such that each pair corresponding to the same spin state is summed
coherently to yield an interference pattern, and the probabilities of the two interference patterns are
summed incoherently to yield the sum pattern. The initial state is a BEC of 104 87Rb atoms in a trap of
frequencies ωx = 2π × 38 Hz and ωy = ωz = 2π × 113 Hz. Taking into account the number of atoms and

9
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Figure 9. Calculated properties of the wavepackets after the final gradient pulse of duration T3 as a function of the deceleration
pulse duration T2. (a) Momentum difference between the two wavepackets of the same spin state (the upper curve is for the state
|1〉). (b) The time between the end of the final gradient pulse and the focusing time where the wavepackets’ size is minimal (the
different curves correspond to the four wavepackets). (c) Distance between the wavepackets of the same spin at the focusing
point. (d) Minimal wavepacket size for the four wavepackets.

the s-wave scattering length of 87Rb (taken to be 100× Bohr radius) we obtain an atomic density with sizes
(in terms of standard deviation) σx = 3.45 μm and σy = σz = 1.23 μm. Note that these calculated numbers
are for a pure BEC model with the given number of atoms. The wavepacket sizes in the trap are not
measurable directly. The final clouds’ measured sizes after the formation of the interference fringes turn out
to be larger than the prediction of the numerical model but almost 20%. This discrepancy may be attributed
to effects that are not accounted for in the simulation, such as an incomplete condensation in the trap or
unknown magnetic field gradients during the trap release.

The simulation used the experimental parameters. To achieve fine tuning of these parameters within
their uncertainty range given by their direct measurement we use values that are consistent with the
periodicity measurements, particularly the periodicity of the interference patterns of each of the spin states
(κ1 and κ2, given in figure 6), which are measured independently of the combined patterns that are the
main result of this work. Fine tuning of the parameters was required as the periodicity of the fringe patterns
is sensitive to variations of some of the parameters within the range of uncertainty given by their direct
measurement. We take the initial trapping distance from the chip to be z0 = 89.5 μm, the duration of the
splitting gradient pulse to be T1 = 3.75 μs and the chip current during the gradient pulses to be
I = 1.122 A. These values are well within the experimental uncertainty, and they reproduce quite accurately
the values of κ that are measured independently. In addition, to reproduce the positions of the spatial
frequency jumps in figure 2, we take the bias gradient during the whole evolution (except the last 13 ms
when the bias is turned off) to be 90 G m−1. This value is not completely supported by experimental
evidence, but it turns out to be the right value to consider for a few possible sources of the magnetic field’s
inhomogeneity. Figure 9 shows some properties of the wavepackets during their evolution, which are not
directly measured in the experiment.

Appendix D. Phase gradient analysis

In this appendix we provide a more intuitive insight into the effects presented in this work by looking at the
variation of the phase ϕ of the sum pattern in real space. Consider two infinite sinusoidal periodic patterns
with the same wavenumber and amplitude but different phases φ1 and φ2. Their sum is a similar periodic
pattern with the same periodicity: cos(kx + φ1) + cos(kx + φ2) = A cos[ϕ(z)], where
A = 2 cos

[
1
2 (φ1 − φ2)

]
and ϕ(z) = kz + 1

2 (φ1 + φ2). The periodicity can be defined as the phase gradient
∂ϕ/∂z = k. If the amplitudes of the two patterns are not equal, then the sum pattern phase is closer to the
phase of the pattern with the larger amplitude. Furthermore, if these amplitudes vary with z, then the sum
pattern’s local phase is not linear in z, and one can define a local periodicity ∂ϕ/∂z = k + δk(z).
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Figure 10. The phase gradient of a superposition of two displaced fringe patterns as the origin of the periodicity jumps. The
phase of the left pattern ϕ1(z) = κz is linear with a slope ∂ϕ1(z)

∂z = κ and represented by a blue dotted curve. The phase of the
right pattern ϕ2(z) = κz +Δφ (defined up to a integer multiple of 2π) is also linear with the same slope and represented by two
equivalent red dashed curves that differ by 2π. The phase ϕ(z) of the sum pattern (solid black curve) is dominated by ϕ1(z) at
z < −σ and by ϕ2(z) at z > σ, while in the central region it gradually shifts from ϕ1(z) to the nearest branch of ϕ2(z). (a) For
Δφ = π + π/9 the phase ϕ(z) decreases along z from ϕ1 to the nearest (lower) branch of ϕ2 and hence the phase gradient of the
sum pattern is smaller than the periodicity of both constituent patterns, and we get ∂ϕ(z)

∂z < κ (this holds when
π < Δφ+ 2πn < 2π). (b) For Δφ = π − π/9 the phase increases from ϕ1 to the nearest (upper) branch of ϕ2 and hence
∂ϕ(z)
∂z > κ (this holds when 0 < Δφ+ 2πn < π). The deviation of the phase gradient ∂ϕ(z)

∂z from κ is maximal when Δφ is close
to an odd multiple of π. When continuously scanning Δφ through such a value the phase gradient and hence the periodicity of
the sum pattern jumps discontinuously. For these plots we used κσ = 8.

The sum pattern in equation (1) of the main text can be written as a complex function with a pre-factor
eiκz and a sum of two translated Gaussians with two z-independent phase factors

V (+)(z) = eiκz[G−(z)eiφ̃1 + G+(z)eiφ̃2 ], (D1)

with G±(z) = exp[−(z − z̄ ±Δz/2)2/2σ2], z̄ ≡ 1
2 (z1 + z2) and φ̃j = 2θj − κzj. The local phase of this

function in the complex plane is

ϕ(z) = κz + atan

[
G−(z) sin φ̃1 + G+(z) sin φ̃2

G−(z) cos φ̃1 + G+(z) cos φ̃2

]
. (D2)

We define Δφ = φ̃1 − φ̃2 and obtain

ϕ(z) = κz + φ̃1 − atan

[
sin Δφ

e−(z−z̄)Δφ/κσ2 + cos Δφ

]
, (D3)

where Δφ = κΔz if θ1 = θ2 = φ in equation (1).
The local gradient of the phase is then

∂ϕ

∂z
= κ

(
1 − Δφ

2(κσ)2

sin Δφ

cosh
[

(z−z̄)Δφ
κσ2

]
+ cos Δφ

)
. (D4)

The phase variation is demonstrated in figure 10. In the transition region between the dominance ranges of
the two constituent patterns the phase gradient, which represents an additional effective contribution to the
wave number, reduces when Δφ is larger than the closest value of 2πn and increases when Δφ is smaller
than the closest 2πn. This gives rise to a jump of KS at Δφ = π(2n + 1).

For a qualitative explanation of the effect see also figure 11.

Appendix E. Model and conservation laws

In this appendix we derive the basic properties of our model following the experimental scenario. We show
why the interference patterns appearing in the experiment should have a form given by the real part of
equation (1) with θ1 = θ2, explain the phase relation Δφ = κΔz and prove the conservation law for κσ.
This derivation is based on a general argument that allows for interactions in the initial state and also allows
for an arbitrary form of the magnetic field By(z).

Consider an initial time t0 after the second π/2 pulse and before the deceleration pulse of duration T2

(see figure 1). We consider only states |1〉 ignoring states |2〉 (whose separation from the states |1〉 is
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Figure 11. Real-space explanation for the shift and jumps of the sum pattern periodicity KS. The local phase in a sum of two
Gaussian envelopes centered at z1 and z2 (z1 < z2) with global phases φ1 and φ2, respectively. The phase of the sum pattern is
closer to φ1 when z < 1

2 (z1 + z2) and closer to φ2 when z > 1
2 (z1 + z2). It follows that if Δφ = φ1 − φ2 is in the range

0 < Δφ < π (upper line of circles) the phase decreases along z (from about φ1 to about φ2 < φ1), corresponding to a negative
contribution δk = ∂φ/∂z < 0 to the wavenumber KS. If π < Δφ < 2π, or equivalently −π < Δφ < 0 the phase increases along
z (lower line of circles) so that the contribution to KS is positive δk > 0. When the phase difference Δφ is scanned through π the
periodicity wave-vector jumps from below kf to above kf .

achieved later with the deceleration pulse), thus we have two states |1〉 with different momenta and we
follow their unitary evolution in time. We define the overlap of these states ψa(z, t0),ψb(z, t0) as (using∫

z =
∫∞
−∞ dz) ∫

z
ψ∗

a (z, t0)ψb(z, t0) = e−
1
2 Γ

2+iχ (E1)

with Γ,χ real and the initial states normalized as
∫

z |ψa(z, t)|2 =
∫

z |ψb(z, t)|2 = 1. In our experiment the
initial time t0 is after the splitting pulse and quite shortly after the BEC is released from the trap, so that the
wave functions include effects of interactions and may deviate considerably from a Gaussian form.

We next consider the full evolution with arbitrary magnetic fields during T2 and T3, however we follow
two evolution scenarios: one for states that stayed in the spin state |1〉 during the third π/2 pulse and one
for the states that flipped into the spin state |2〉 during this RF pulse. The superposition of the two scenarios
corresponds to the wave function

1√
2

(ψ1a + ψ1b)|1〉+ 1√
2

(ψ2a + ψ2b)|2〉, (E2)

keeping the normalization of the initial states (ψa(z, t) + ψb(z, t))|1〉. The pair ψ1a,ψ1b forms the
interference pattern of spin 1 while the pair ψ2a,ψ2b forms that of spin 2, the summation of both
interferences gives the observed sum pattern. For either scenario the time evolution represented by the
evolution operator Ui(t, t0, z), is identical for ψia(z),ψib(z) (common Hamiltonian for a given spin state
i = 1, 2), hence the overlap at the final time t is∫

z
ψ∗

ia(z, t)ψib(z, t) =

∫
z
ψ∗

a (z, t0)U†
i (t, t0, z)×

Ui(t, t0, z)ψb(z, t0) =

∫
z
ψ∗

a (z, t0)ψb(z, t0). (E3)

From this conservation law of the overlap integral we derive more explicit conservation laws that involve
parameters of the wavepackets. We next assume that the wave-packets after the gradient pulses are
Gaussians with equal time-dependent width σi(t) for the pair of wavepackets with the same spin, but
different center positions and momenta. In our experiment the final wavepackets are fairly close to a
Gaussian and the two spin states have similar widths, see figures 6 and 8. This is indeed expected as long as
the two wavepackets, which originate from the same initial wave-packet before splitting, propagate in free
space and in a potential that has a constant curvature ∂2V/∂z2 over the range occupied by the two
wavepackets. This condition is satisfied in the experiment since the potential due to the magnetic field
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during the gradient pulses is generated by current wires whose distance from the atoms (about 100 μm) is
much larger than the distance between the wavepackets or their width (a few μm).

If this condition is satisfied then the interference terms have the form

ψ∗
ia(z, t)ψib(z, t) = A2

i e−[(z−zia)2+(z−zib)2]/4σ2
i e−iκiz+iφi , (E4)

where Ai = (2πσ2
i )−1/4 is the normalization constant and zia, zib are the corresponding Gaussian centers.

The explicit forms of κi and φi are given below, though for now they are not needed.
We now use (z − zia)2 + (z − zib)2 = 2(z − zi)2 + 1

2 (δzi)2, where δzi = zib − zia and zi =
1
2 (zia + zib) is

the average position of each pair of states. The interference pattern from (E4) is then

Re[ψ∗
ia(z, t)ψib(z, t)] = A′

i e−(z−zi)
2/2σ2

i cos[κiz − φi], (E5)

where A′
i = A2

i e−(δzi)
2/8σ2

i .
Integrating equation (E4) yields∫

z
ψ∗

ia(z, t)ψib(z, t) = e−
1
2 [(δzi/2σi)

2+(κiσi)
2] e−iκizi+iφi . (E6)

By comparing this form to equation (E1) the conservation law for the overlap integral yields our central
result

Γ2 =

(
δzi

2σi

)2

+ (κiσi)
2, (E7)

χ = −κizi + φi. (E8)

Note that all the parameters δzi,σi,κi, zi,φi are time dependent so that the right-hand sides of
equations (E7) and (E8) are conserved in time for either spin state and are in fact spin independent, since
Γ,χ are common to both spins.

Equation (E5) can now be identified with the real part of each of the two patterns in equation (1), with
φi = κizi − 2θi. By comparing this phase term with equation (E8) we identify θi = −χ/2. As χ is a
conserved quantity that is common to both spins we therefore conclude that θ1 = θ2. This is an exact result
exhibiting the quantum signature of our implementation of equation (1) in the main text as it follows the
quantum evolution from a common source.

Note that σi and δzi are nearly the same for i = 1, 2, determined mainly by the size, separation and
relative momenta of the common parent state entering the third π/2 pulse. While the curvature of the third
gradient pulse of duration T3 affects the sizes and relative distances and momenta within pairs of states
differently for each spin, this effect is quite minor due to the fact that T3 is much shorter than T2. As
δz1 ≈ δz2 and σ1 ≈ σ2, equation (E7) implies that κ1 ≈ κ2, as observed in the experiment
(see appendix B).

In general, the phase difference between the two patterns Δφ = (κ1z − φ1) − (κ2z − φ2) is, in general
z-dependent. However, when we use the approximation κ1 = κ2 = κ this phase difference becomes

Δφ = κ(z2 − z1) ≡ κΔz. (E9)

To conclude that κσ is independent of T2 we need to show that δz
2σ at the time of observation is relatively

small. In fact, in order to observe a well defined interference one needs the separation δz to be smaller than
the combined width of the wavepackets, thus reliable experimental data must have δz � 2σ. In figure 8 we
present the product Np = 2

π κσ, found by fitting our real space data. The data is therefore consistent with
the conservation law and determines κσ = π

2 5.61 = 8.81. The first term of equation (E7) is then
� ( 1

8.81 )2 ≈ 1% of the second term and can indeed be neglected.
Let us now derive the form of the interference equation (E4) and identify explicit forms for the

interference wavenumber κ(t) and for the width σ(t) during the evolution in free space. The general shape
of two Gaussian wave functions with the same widths at any time is (the following applies to either spin
state and we ignore the index i = 1, 2, for simplicity)

ψa(z, t) = A e−(z−za)2/4σ2+ 1
2 iα(z−za)2+ika(z−za)+iφa ,

ψb(z, t) = A e−(z−zb)2/4σ2+ 1
2 iα(z−zb)2+ikb(z−zb)+iφb , (E10)

where α(t) is a coefficient of the quadratic phase that evolves when the Gaussian expands or shrinks and is
the same for the two wavepackets if the width σ(t) is common. Here also the centers za, zb, the phases φa,φb

and A = (2πσ2(t))−1/4 are time dependent; �ka, �kb are (time independent) momenta of the wavepackets.
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For a particle with mass m the free space evolution of the Gaussian width is

σ(t) =
√
σ2

m + (�/2mσm)2(t − tm)2, (E11)

where σm is a minimum size occurring at time t = tm in the past or future history of the evolution if it
occurs in free space. In our case this minimal wavepacket size occurs at some time (focusing time) after the
end of the deceleration pulse (usually after the translation pulse T3). The quadratic phase coefficient is
given by

α(t) =
m

�

σ̇

σ
=

�(t − tm)/4mσ4
m

1 + (�/2mσ2
m)2(t − tm)2

, (E12)

so that α = 0 at the focusing time t = tm and α(t) → m/�(t − tm) after a long time where σ(t) 
 σm. The
phase of the interference term of ψa and ψb of equation (E10) can be written as

− (αδz − δk)(z − z̄) + δφ− k̄δz, (E13)

where z̄ = 1
2 (za + zb), k̄ = 1

2 (ka + kb) and δk = kb − ka are the average momentum and momentum
difference between the two wavepackets, while δφ = φb − φa. We therefore identify

κ = αδz − δk. (E14)

Finally we derive an interesting relation between the properties of the state at the observation time tf of
our experiment and at the focusing time tm, where tf occurs at a time Tf (time of flight) after tm, i.e.
tf = tm + Tf . The width from equation (E11) and wavelength from equations (E12) and (E14) are
given by

σ(tf) =
�Tf

2mσm

√
1 + ξ2 (E15)

κ(tf) =
md

�Tf

1

1 + ξ2
− δk

ξ2

1 + ξ2
, (E16)

where d = δz(tm) is the distance (positive or negative) between the wavepacket centers of the same spin at
the focusing time and ξ = 2mσ2

m/�Tf. In our experiment the wavepacket that has a larger momentum at t0

is always further away from the chip so we can choose the indices a and b such that always zb > za and
d > 0 and hence κ(tf ) > 0 in the limit ξ � 1.

When the Gaussian wavepackets are much larger than their minimal size σm the factor ξ becomes
negligible and the equations for κ and σ simplify considerably. This situation indeed applies to the
conditions of our experiment, as predicted by our numerical simulation (see appendix C), but let us show
this here by using only direct experimental evidence. Without the focusing effect due to the positive
curvature of the magnetic field potential applied during the pulses the expansion of the BEC was measured
to obey the free expansion rule σ(t) = σ(0)

√
1 + ω2t2 for any time t after trap release, where ω ≈ 2π ×

120 Hz is the trap frequency along z in our experiment. For σ(0) = 1.2 μm [17], free expansion in our
experiment would lead after a time t ≈ 16 ms (from trap release to observation) to a final size
σ ∼ σ(0)ωt ≈ 15 μm. However, for the observed range of T2 the measured width in our experiment is in
the range σ(tf ) = 30–80 μm, which is at least twice as large as the expected width in free expansion. This
enlarged wavepacket size indicates that the magnetic fields focus the wavepackets to a minimal size σm that
is much smaller than 15 μm and this focusing causes the enhanced expansion. As a first step let us only
assume σm < 15 μm. This puts an upper bound to ξ, as (using equation (E15)):
ξ = 1/

√
(σ(tf)/σm)2 − 1 < 1/

√
(22 − 1 = 1/

√
3. This bound allows us to set an upper bound for

σm =
√
�Tfξ/2m < 1.7 μm (using Tf < 14 ms and the mass of rubidium m = 1.44 × 10−25 kg). Once this

bound on σm is set, we can estimate that ξ ≈ σm/σ(tf ) < 1.7/30 � 1 and therefore we can take the limit
ξ → 0 in equations (E15) and (E16), giving rise to the well known relation κ = md/�Tf . We then obtain by
multiplying the two equations

d

2σm
≈ κ(tf)σ(tf) ≈ Γ. (E17)

This result can also be obtained by applying the conservation law equation (E7) at tm, where
κ(tm) = −δk = ka − kb, i.e.

d2

4σ2
m

+ (ka − kb)2σ2
m = Γ2. (E18)

As δz(tf ) = d + �δkTf/m and σm ≈ �Tf/2mσ(tf ) we obtain |δkσm| ≈ |δz(tf ) − δz(tm)|/2σ(tf ) � 1 � Γ, as
(where |d| � σ(tf )) we concluded above, hence equation (E17) is proved.
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Having established the relations above, we can obtain estimates of the parameters of the state at the
focusing time by assuming that the focusing time tm relative to the end of the translation pulse of duration
T3 is much smaller than the remaining time of flight Tf , so that Tf ∼ 14 ms. It then follows from κ being in
the range 0.3–0.1 μm−1 that d ≈ �κTf/m is in the range 3 μm to 1 μm, while σm is in the range 0.17–
0.06 μm. It then follows that ξ is in the range 0.006–0.0007. These values are reproduced in our numerical
simulation (see appendix C and figure 9).

In appendix F we present an additional demonstration of the conservation laws, which does not rely on
the overlap integral between the wavepackets and uses, instead, arguments based on the evolution of the
phase space distribution (Wigner function) of a superposition of two wavepackets.

We have shown in this appendix that an internally coherent system, which we may define as a system
having constituents from a single coherent parent that is split into a superposition of two internal states,
satisfies Δθ = 0, as each of the constituents preserve the phase χ of the parent state. While this proof is
based on properties of quantum superpositions, the same property may also appear in classical
electromagnetic pulses (e.g. RF or microwave). When a single pulse with a measurable real field
ψ(x, t) = exp[− 1

4σ2 (x − vt)2] cos[k(x − vt) + θ], representing an electric or magnetic field, is split into a
pair of pulses propagating in different trajectories and then recombined with a time delay ΔT, the resulting
field is a superposition ψ(x, t) + ψ(x, t −ΔT). This field has a form similar to equation (1) of the main text
with Δθ = 0. Whether such an electromagnetic field is generated by a splitting and recombination process
or by an engineered electronic pulse generator, it will conserve the property Δθ = 0 when it propagates
through any homogeneous medium. However, if the delay between the two pulses is generated in a
dispersive medium where the group velocity vg is not equal to the phase velocity vφ, then the time delay is
different for the Gaussian envelope of the pulse and for the phase of the oscillations within this envelope
and therefore θ is not conserved and becomes different for the two pulses. Results similar to those obtained
in this work can also be obtained in the case where Δθ = constant �= 0, as discussed in
appendix G.

Appendix F. Demonstration of the conservation laws in phase space

In this appendix we complement the proof of the conservation laws given in appendix E by a demonstration
that indicates that the conservation of the number of interference fringes and their phase do not essentially
require the overlap integral to be involved. While the proof given in appendix E is general in the sense that
it shows that the quantities Γ and χ are conserved in any unitary operation, the specific form of Γ is in
terms of parameters of a Gaussian wavepacket and it relies on the overlap integral between the two
wavepackets, which may crucially depend on details of the shape of the wave functions at their tails. Here
we present a complementary vision that does not rely on an overlap integral and may apply to wavepackets
that are completely non-overlapping. On the other hand, it is based on the assumption that the potential
acting during the evolution can be fairly well described by a quadratic form over the region occupied by the
distribution.

As we have shown in a previous work that analyzed the interferometric sequence in our SGI [15], the
evolution of the pair of wavepackets can be viewed as a scaled phase space rotation (see figure 9 in reference
[15] and an additional rigorous proof here below). The form of the phase space distribution of a
superposition of two wavepackets consists of two peaks at the phase space coordinates where these
wavepackets are centered and a fringe pattern that appears in the Wigner distribution in between these
centers, whose wave vector points perpendicular to the line that connects between the phase space center
coordinates, as demonstrated in figure 12. Under rotation of phase space coordinates this structure
conserves the form of this fringe pattern and in particular it conserves the number of fringes along this
pattern and the phase, namely the position of the fringes relative to the center of the pattern. When the two
coordinate centers are separated by momentum, while the distributions around these centers overlap in
space, the fringe pattern appears as a real interference pattern in space. On the other hand, when the two
centers are separated in space, such as during the focusing of the wavepackets before they expand, then the
interference fringes do not appear in the real space distribution but rather in the momentum
distribution.

Let us now explicitly derive the starting point result that evolution in a quadratic potential can be
represented by a phase space rotation. The Wigner function for a pure state represented by a wave function
ψ(x, t) in one dimension is defined as

W(x, p) =
1

2π�

∫ ∞

−∞
dη e−iηp/�ψ

(
x +

η

2

)
ψ∗

(
x − η

2

)
. (F1)
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Figure 12. Wigner function phase-space density of a superposition of two Gaussian wave-packets separated by δp and δz. The
shape of the pattern in phase space is conserved under phase space rotations and axis scaling operations.

If ψ(x, t) satisfies the Schrödinger equation i∂ψ/∂t = −(i/�)Ĥψ, where �H is the Hamiltonian, then the
evolution of the Wigner function is determined by

∂W(x, p)

∂t
= − i

�

∫
η

{[
Ĥ,ψ

(
x +

η

2

)
ψ∗

(
x − η

2

)]}
p
, (F2)

where for brevity we define ∫
η

{. . . }p ≡
1

2π�

∫ ∞

−∞
dη e−iηp/� . . .

and the Hamiltonian in the commutation relation operates only on the wave function closest to it.
Let us now assume a Hamiltonian with a quadratic potential Ĥ = p̂2/2m + 1

2 mω2x̂2. The kinetic part of
the Hamiltonian p̂2/2m, where p̂ = −i�∂/∂x acts as

∂W

∂t

∣∣∣∣
kin

=
i�

2m

∫
η

{
ψ′′

(
x +

η

2

)
ψ∗

(
x − η

2

)
− ψ

(
x +

η

2

)[
ψ′′

(
x − η

2

)]∗}
p
. (F3)

When integrating by parts the terms involving ψ′(x + η
2 )ψ′(x − η

2 )∗ cancel and we are left with the term

= − p

m

∫
η

{
ψ′
(

x +
η

2

)
ψ∗

(
x − η

2

)
+ ψ

(
x +

η

2

)
ψ′
(

x − η

2

)∗]}
p

= − p

m

∂W

∂x
. (F4)

Similarly a harmonic potential term 1
2 mω2x̂2 in the Hamiltonian acts as

∂W

∂t

∣∣∣∣
pot

= − i

2
mω2

∫
η

{[(
x +

η

2

)2
−
(

x − η

2

)2
]
ψ
(

x +
η

2

)
ψ∗

(
x − η

2

)}
p

. (F5)

As (x + η
2 )2 − (x − η

2 )2 = 2xη = 2i�x(∂/∂p) we find that this expression is equal to mω2x∂W/∂p. It
follows that the equation for the Wigner function is

∂W(x, p)

∂t
= − p

m

∂W

∂x
+ mω2x

∂W

∂p
. (F6)

For an infinitesimal time interval δt the solution is

W(x, p, t + δt) = W
(

x − p

m
δt, p + mω2xδt, t

)
, (F7)

while for an arbitrary time interval τ this becomes

W(x, p, t + τ) = W
(

x cos ωτ − p

mω
sin ωτ , p cos ωτ + mωx sin ωτ , t

)
. (F8)
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Figure 13. Sum pattern wavenumber KS in units of the constituent wavenumber κ as a function of the phase difference Δφ and
the number of periods within the system size Np.

We have then proved that evolution in a quadratic Hamiltonian is equivalent to phase space rotation of
the Wigner function of an arbitrary pure state. This proof can be easily extended to impure states that are
given by a density matrix which is a weighted sum over density matrices of pure states.

Appendix G. Fourier analysis of the model

In this appendix we identify the periodicity wavenumber KS of the sum pattern modeled by a sum of two
translated localized periodic patterns with a Gaussian profile (equation (1)). We consider the FT of this
pattern with Fourier variable K up to a prefactor σ

√
2π,

FV (+)(K) =
1

2
e−

1
2 σ

2(K−κ)2
[ei(K−κ)z1+iφ1 + ei(K−κ)z2+iφ2 ]

|FV (+)(K)| = e−
1
2 σ

2(K−κ)2 | cos
1

2
[(K − κ)Δz +Δφ]| (G1)

and using Δφ = κΔz yields equation (2) of the main text. The position at the maximum of |FV (+)(K)| is
defined as KS and is given by

KS = κ− Δφ

2κσ2
tan

(
KS

2κ
Δφ

)
. (G2)

Only when the phase difference Δφ is an integer multiple of 2π, Δφ = 2πn, equation (G2) has the trivial
solution KS = κ. Otherwise the period of the sum pattern is different than the period of its constituents: the
fundamental result of this work.

In figure 13 we present the solution for KS/κ at the peak of the FT in equation (G2) as a function of Δφ

and Np where

Np =
2

π
κσ =

4σ

λ
(G3)

is the number of periods of each of the constituent patterns over the range where their envelopes are larger
than 1/e2 of their maxima. The value of Np, as for κσ, is conserved, i.e. independent of T2 in our
experimental setup. The deviation of KS from κ is larger when the number of periods within the system size
is small, while it diminishes with Np so that in the limit of an infinite periodic system, Np →∞, the period
KS of the sum pattern is just the period of the constituent patterns κ.

G.1. Jumps
KS has in particular two degenerate solution at Δφ = π(2n + 1) at KS = κ± 1

2ΔKS where the jump ΔKS

satisfies

ΔKS =
π(2n + 1)

σ2κ
cot

ΔKSπ(2n + 1)

4κ
(G4)

with solutions shown in the inset to figure 4.
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Figure 14. Mutual cancellation of the variation of system size (2σ) and relative translation Δz leading to the rigidity of sum
pattern periodicity in the experiment: numerical results (see appendix C). (a) Average wave-packet size σ increases with T2 due
to increased focusing strength and a resulting increased expansion speed during TOF, while the translation distance decreases
with T2 due to a weaker final gradient pulse given further away from the chip. (b) The root sum of squares

√
(2σ)2 +Δz2 varies

relatively slightly over the range shown, giving rise to a minor deviation from zero slope of KS as a function of T2 at the center of
each of the plateaus.

G.2. Rigidity
We can gain some insight into the formation of plateaus (rigidity of KS between jumps) by looking
analytically at the derivative of equation (G2) with respect to Δφ in between the jumps, i.e. at Δφ = 2πn. A
plateau requires that this derivative vanishes,

dKS

dΔφ

∣∣∣∣
Δφ=2πn

=
∂κ

∂Δφ
− 2πnκ

(2πn)2 + π2N2
p

= 0. (G5)

This requirement can be satisfied for each n if

κ(Δφ) = κ0

√
Δφ2 + π2N2

p , (G6)

where κ0 is a constant. By using the relations Δφ = κΔz and Np = 2κσ/π equation (G5) is satisfied if

√
(2σ)2 +Δz2 =

1

κ0
= const. (G7)

In figure 14 we show the dependence of Δz and 2σ on the deceleration time T2 over the range shown in
figures 2 and 4. The reason that Δz depends on T2 is that with a longer T2 the atoms spend more time
before reaching T3 and also acquire a larger momentum, hence at T3 the atoms are further away from the
chip and experience a smaller gradient. On the other hand the mean wavepacket width σ increases with T2

because the focusing strength and hence the speed of expansion is larger for longer T2. The value of√
(2σ)2 +Δz2 in this range has therefore a relatively low variation (standard deviation of 2.4% of the

mean). This explains why KS shows rigidity over the range of T2 variation.
Let us summarize. In our experiment the rigidity, namely insensitivity of KS to the change of the

periodicity κ of the constituent patterns, is achieved due to the following properties of the model:

• θ1 = θ2.

• κσ = 1
2πNp constant.

• (2σ)2 + (Δz)2 constant.

While the first two conditions are exact constraints that follow from fundamental properties of the
system, as shown in appendix E, the third condition is an approximate result related to the specific choice of
the experimental parameters. It is a necessary condition for obtaining zero slopes in the middle of each
plateau but not a sufficient condition for obtaining strict flatness over the whole range of each plateau.

In the case of non-overlapping constituent patterns, i.e. Δz 
 2σ, the third condition for rigidity
simplifies to Δz = constant. In this case we can also relax the first two conditions (in an arbitrary system
that does not inherently satisfy them): it is sufficient that Δθ is a constant (not necessarily zero) and κσ is
not required to be conserved. Let us consider this scenario where Δz is kept constant. In our experimental
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Figure 15. Universal plateaus in KSΔz for large Δφ when Δz is held constant, using Np = 5.61. In blue Δθ = 0 and in orange
(dashed) Δθ = π/4. This shows that the quantized distribution of KS enables to determine the value of Δθ by the positions of
the jumps and by the values of the plateaus.

simulation, a constant Δz (independent of T2) may be realized by adjusting delay times between the pulses.
In the context of real electromagnetic pulses, it may be achieved by picking a sub-sample satisfying Δz =
constant (or Δt = constant) out of a random flux or it can be generated artificially (see discussion of a
mode-locked laser below). In such a case, equation (G2) is written as

KSΔz = Δφ− (Δφ)2

2(κσ)2
tan(

1

2
KSΔz). (G8)

The solution for KS is plotted in figure 15, clearly there are plateaus at large Δφ. These plateaus become
visible at Δφ � Np, equivalent to Δz � σ. This implies that the two patterns are separated and do not
interfere in real space. However, Δφ and the sum pattern wavevector are well defined. We note in particular
that the plateaus are at universal values KSΔz = 2πn where n is defined at the center of the plateau as
Δφ = 2πn.

We also plot in figure 15 a case with a finite Δθ = θ2 − θ1 that results in shifting the argument of the
tan function in equation (G8) by −Δθ. The orange-dashed line corresponds to Δθ = π/4, showing a
similar structure except that the jump positions and plateau values are shifted.

To understand the rigidity in this case, consider the AFT of the pair of patterns
|FV (+)(K)| = e−

1
2 σ

2(K−κ)2 | cos( 1
2 KΔz −Δθ)| is a product of a Gaussian depending on κ and a cosine that

does not vary when κ is scanned. This AFT is an absolute cosine with Fourier space periodicity 2π/Δz with
a Gaussian envelope whose width κ and extends over 1/σ extends over a few periods of the cosine and its
center varies with κ. When κ is changed the peaks of the cosine stay static and KS, defined as the largest
peak of the AFT, changes only when the peak of the Gaussian function is closer to the next cosine peak.

This model of non-overlapping pulses with Δθ = constant may be implemented with a mode-locked
laser, whose output is a train of equally spaced light pulses with a constant phase shift Δθ (so-called
carrier-envelope offset) between each pulse and the next one, which can be locked to a value that is
independent of other laser parameters. By analyzing the FT of pairs of consequent pulses of this laser while
scanning the carrier frequency we can mimic at least some of the features of our model, namely the main
peak of the spectrum of each pair will show jumps when the carrier frequency is scanned. In order to obtain
exactly the same behavior of KS as in figure 15, where its value is constant within a range of frequencies (i.e.,
rigidity), giving rise to a quantized spectrum of KS, one has to manipulate the properties of the output such
that the time Δt between consequent pulses is also independent of carrier frequency. This is not a
straight-forward goal and requires careful engineering of the dispersive properties of the laser medium.
Obviously, such tests may only be done with frequencies for which available detectors have enough
bandwidth to follow the oscillations.

ORCID iDs

Omer Amit https://orcid.org/0000-0002-5185-6170
Or Dobkowski https://orcid.org/0000-0002-7256-5495
Zhifan Zhou https://orcid.org/0000-0001-6323-6756

19

https://orcid.org/0000-0002-5185-6170
https://orcid.org/0000-0002-5185-6170
https://orcid.org/0000-0002-7256-5495
https://orcid.org/0000-0002-7256-5495
https://orcid.org/0000-0001-6323-6756
https://orcid.org/0000-0001-6323-6756


New J. Phys. 24 (2022) 073032 O Amit et al

Yair Margalit https://orcid.org/0000-0002-9180-3700
Samuel Moukouri https://orcid.org/0000-0002-9710-0985
Yigal Meir https://orcid.org/0000-0003-1606-8969
Baruch Horovitz https://orcid.org/0000-0003-0832-896X
Ron Folman https://orcid.org/0000-0002-3449-2563

References

[1] Saveljev V, Kim J, Son J-Y, Kim Y and Heo G 2020 Static Moiŕe patterns in moving grids Sci. Rep. 10 14414
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