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P H Y S I C S

Geometric phase amplification in a clock interferometer 
for enhanced metrology
Zhifan Zhou1,2, Sebastian C. Carrasco3*, Christian Sanner4*,  
Vladimir S. Malinovsky3, Ron Folman2*

High-precision measurements are crucial for testing the fundamental laws of nature and advancing the techno-
logical frontier. Clock interferometry, where particles with an internal clock are coherently split and recombined 
along two spatial paths, has sparked interest due to its fundamental implications, especially at the intersection of 
quantum mechanics and general relativity. Here, we demonstrate that a clock interferometer provides metrologi-
cal improvement compared to its technical noise–limited counterpart using a single internal quantum state. This 
enhancement around a critical working point can be interpreted as a geometric phase–induced signal-to-noise 
ratio gain. In our experimental setup, we infer a sensitivity enhancement of 8.8 decibels when measuring a small 
difference between external fields. We estimate that tens of decibels of sensitivity enhancement could be attained 
for measurements with a higher atom flux. This opens the door to developing a superior probe for fundamental 
physics and a high-performance sensor for various technological applications.

INTRODUCTION
Matter-wave interferometry has evolved into a robust platform for 
probing the fundamental principles of quantum mechanics (1, 2). It 
is instrumental in sensing gravitational signals (1), testing the quan-
tum superposition principle (3), and in exploring the intersection 
between quantum mechanics and general relativity (4–11). Further-
more, matter-wave interferometry is a fundamental demonstration 
of our ability to manipulate atomic motion coherently (2, 12, 13). A 
typical matter-wave interferometry experiment involves the cre-
ation of superposition of separated atomic wave packets, acquisition 
of a relative phase signal between them, subsequent interference of 
the wave packets, and some form of measurement of the final signal 
(in our case, a phase shift of the spatial interference pattern). Natu-
rally, these operations contribute to the experimental noise budget, 
pushing the sensitivity away from the standard quantum limit 
(SQL), the lower sensitivity bound of metrology without quantum 
entanglement. Here, we use the internal structure of two-level atom 
matter waves and a steep change in the geometric phase (GP) re-
sponse [rooted in the Pancharatnam-Berry phase (14–16)] to am-
plify a small interferometric signal. The primary advantage of the 
scheme appears in the observation that the technical noise is not 
amplified with the interferometric signal, thus increasing the overall 
signal-to-noise ratio. Moreover, our approach is an example of clock 
interferometry that exploits an interplay of internal (clock) and ex-
ternal (spatial) degrees of freedom (6, 10). Our study is a proof-of-
principle experiment highlighting the potential of GP amplification 
for a wide range of precision measurements.

In a traditional atom interferometer, the interrogation signal is 
typically accumulated as a dynamical phase (DP), which is influ-
enced by noise during the preparation, interrogation, and signal 
detection stages. The present work provides an experimental 

demonstration of a relatively large enhancement in metrological 
sensitivity, 8.8 dB, through the Pancharatnam GP (14–16) com-
pared to the case without GP amplification. The enhancement 
comes from an amplification of the signal response (phase shift of 
the interference pattern caused by an external field signal) around 
the critical working point, which is accompanied by an increase in 
quantum noise. The signal-to-noise ratio increases relative to the 
case without amplification because only the quantum noise in-
creases, and the technical noise remains the same. The technique 
involves not only a separation of the atoms into two arms but also 
a superposition of internal states, called clock interferometry (4–
11). The separation between the arms allows us to probe and com-
pare different parts of the space, while the subsequent interference 
of two wave packets in different internal states gives rise to a Pan-
charatnam GP. The universality of the approach allows direct ap-
plication of the technique to other atom interferometer schemes 
[atomic fountains (3), waveguides (17), fully trapped interferom-
eters (13), etc.], and general quantum sensing platforms (12).

RESULTS
Model
We start by describing the matter-wave interferometry scheme we 
use. First, we prepare the system in a superposition of two spatially 
separated wave packets A and B. These wave packets are internally 
initialized via a radio frequency (RF) field to the appropriate two-
level superposition. Then, a magnetic gradient is applied, and each 
wave packet experiences a different magnetic field. As wave packets 
evolve during the interrogation stage, each internal degree of free-
dom accumulates a differential phase due to the different coupling 
with the field (see Fig. 1E). For notational simplicity, we map the 
relative phase accumulation into wave packet B. We can then de-
scribe the wave packets by the following wave functions
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where ψ
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 are the spatial components of the wave 

functions, ∣1⟩ and ∣2⟩ are two internal degrees of freedom that form 
the internal superposition, and ϕ1 and ϕ2 are the accumulated phas-
es. Upon expansion, the Gaussian wave packets overlap and merge 
into a single wave packet, and the observed interference pattern 
takes the form (see derivation in Materials and Methods)

where λ is the spatial periodicity of the fringes, σz is the Gaussian 
width of the combined wave packet obtained after the time of flight, 
v corresponds to visibility and

Thus, the phases ϕ1 and ϕ2 lead to a phase shift in the interference 
pattern. If θ = 0, the entire population is in state ∣2⟩, and ΦT = ϕ2. 
Similarly, if θ = π, the entire population is in state ∣1⟩ and ΦT = ϕ1. In 
the limit ϕ = ϕ2 − ϕ1 = π + ε with ε≪ 1, we obtain an approximat-
ed linear dependence given by

where G = (1−R)−1 is the slope and R = cos2(θ∕2)∕sin2(θ∕2) is 
the ratio between the populations in the internal degrees of free-
dom. In the regime where R is approximately 1 (or θ ≈ π∕2), the 
signal is boosted by G, and the interference visibility v approaches 

zero, following the equality: v2 = 1 − 4sin2(θ∕2)cos2(θ∕2)sin2(ϕ∕2) 
(see Materials and Methods). To bring the system to the working 
point (ϕ ≈ π), the introduction of a π phase offset is needed. To do 
that, additional manipulations can be used, such as the coherent 
coupling to additional levels discussed in (18). This places the sys-
tem at the optimal sensitivity point for practical operation, that is, to 
estimate ϕ through a ΦT measurement. Figure 1 (A and B) shows the 
interferometric scheme for two different cases. Figure 1A shows the 
case where θ = 0, while Fig. 1B illustrates the case where θ is close to 
π∕2; the phase is biased at π, and there is phase amplification.

GP amplification regime and metrological improvement
At first glance, one may argue that interferometry in the low-
visibility region presented in Fig. 1B would be impractical as the 
phase uncertainty diverges for v → 0. As shown in the following, 
this region shows a metrological improvement compared to θ = 0 or 
θ = π, where the internal degrees of freedom do not play an active 
role since only one internal state is populated. Two conditions have 
to be met to obtain metrological improvement. First, ϕ has to be 
close to π, which is the working point of the interferometer. Second, 
θ must be close enough to π∕2 to increase the signal but not pre-
cisely π∕2, where the visibility is zero. Once these two conditions 
are satisfied, the phase uncertainty will not diverge, and the phase 
response will be amplified (as shown in Eq. 4) without a propor-
tional increase in technical noise. This can effectively suppress the 
negative effect of technical noise on interferometric sensitivity. Typ-
ical matter-wave interferometers suffer from technical noise due to 
initial preparation, path length noise rooted in driving field noise, 
detection noise due to the limited resolution of the camera, and en-
vironmental noise, among others (1). This technical noise becomes 

ρ(z)=
1

2
⟨Ψ

A
+Ψ

B
∣Ψ

A
+Ψ

B
⟩∝ exp

�
−

z2

2σ2
z

�

�
1+vcos

�
2π

λ
z+ΦT

�� (2)

ΦT = arg⟨a ∣b⟩

=ϕ2+arctan

�
sin2(θ∕2)sin

�
ϕ1−ϕ2

�

cos2(θ∕2)+ sin2(θ∕2)cos
�
ϕ1−ϕ2

�
�

(3)

ΦT = ϕ2 − Gε (4)

A

B

C

D

E

Fig. 1. Illustration of the matter-wave experimental sequence that gives rise to the GP amplification. In (A), we show the case in which there is the same single 
state in each arm, where ϕsig is a weak interferometric signal due to the coupling to the external field. In (B), we present the case in which the matter wave is prepared in 
an internal superposition of the states ∣1⟩ and ∣2⟩. In (C), we illustrate that when the relative rotation of the Bloch vector is less than π, the geodesic connection line 
matches the latitude line, yielding no enclosed areas and thus a GP of zero. Conversely, when the relative rotation of the Bloch vector surpasses π [illustrated in (D)], the 
geodesic and latitude lines encircle the north hemisphere, leading to a GP shift of π when θ is π∕2. In (E), we display the experimental realization of the sequence for the 
longitudinal interferometer (illustration not to scale). The experiment unfolds in free fall along the z axis, representing gravity’s direction. Initially, we achieve a coherent 
spatial splitting using a Stern-Gerlach beam splitter (SGBS) (20) combined with a stopping pulse. This creates two wave packets in the ∣2⟩ state. We initialize the internal 
superposition using an RF pulse lasting TR. Following this, we can encode a relative phase of the two wave packets by applying a magnetic field gradient �B∕�z for a 
duration of TG. The final interference pattern, from which we derive the interference phase, forms during the time-of-flight (TOF) free evolution as the wave packets 
expand and overlap.
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more important when the number of atoms increases, as the quan-
tum noise decreases (19).

Experimental scheme
Figure 1E depicts the experimental scheme [see more details in 
(10, 16)]. First, we prepare a Bose-Einstein condensate (BEC) with 
rubidium-87 atoms in the internal state ∣2⟩ ≡ ∣F = 2,mF = 2⟩, 
where F represents the total angular momentum and mF its magnetic 
projection. After that, the wave packet is split into two using a 
Stern-Gerlach–type beam splitter technique (20). We then apply a uni-
form RF pulse to drive the population to state  ∣1⟩ ≡ ∣F = 2,mF = 1⟩. 
Now, the internal states of both wave packets are a superposition of 
∣2⟩ and ∣1⟩ with a polar angle θ (point A on the Bloch spheres in Fig. 1, 
C and D). We next apply a magnetic-field gradient; thus, both wave 
packets evolve under different magnetic fields. Because of the differ-
ing magnetic projections of  ∣1⟩ and ∣2⟩, the wave packet rotates in the 
Bloch spheres until it points at B on the Bloch spheres (Fig. 1, C and 
D). Note that at this point, we have the wave packets that Eq. 1 de-
scribes. Last, the wave packets overlap through time-of-flight expan-
sion, and visibility v and phase ΦT can be extracted by fitting the 
interference pattern to Eq. 2 [see Materials and Methods and (20)]. If 
θ is close enough to π∕2, we expect a phase amplification effect as Eq. 
4 predicts.

We can understand phase-shift amplification in a GP picture us-
ing the geodesic rule proposition (16, 21, 22). The measured phase 
has two components. One part is the GP, which results from non-
cyclic evolution as in Fig. 1, C and D, and the other is a DP, a linear 
component resulting from magnetic projection. To be precise, 
ΦT = ΦG +ΦD, where the first term is the GP, and the other, the DP, 
is given by ΦD = ϕ(1−cosθ)∕2. The GP follows the geodesic rule 
that dictates the reverse progression along the geodesic curve, which 
is the shortest path on the surface of the Bloch or Poincaré sphere, 
linking the initial and final points. The GP is half the area enclosed 
by the trajectory and the corresponding geodesic path. For instance, 
when the internal states of A and B are in an equal superposition, the 
Bloch vectors are on the equator of the Bloch sphere. If the relative 
rotation or azimuth angle between A and B is less than π, the geode-
sic and latitude lines coincide; therefore, they do not enclose any 
actual area (as shown in Fig. 1C). In contrast, when this rotation 
exceeds π, they collectively encompass a hemisphere (Fig. 1D), re-
sulting in a geometric π phase change. If θ is not equal to π∕2 but 
close, there is no sudden phase change but a region with increased 
slope. This geometric π phase change has been experimentally dem-
onstrated in recent studies (16) and is related to the Pancharatnam 
phase (15). However, the metrological properties have never previ-
ously been analyzed in detail. Notably, the GP depends only on the 
parameter-space area. Thus, our scheme is, by design, resilient to 
certain disturbances and imperfections. This GP resilience has been 
studied both theoretically and experimentally in spin-half systems 
with cyclic evolutions (23–28). In the broader context of noncyclic 
evolution, we observed the rapid phase change along the geodesic 
rule, the amplification of a small phase change signal, and the lack of 
amplification of technical noise. Thus, the hindering effect of techni-
cal noise on interferometric sensitivity is expected to be suppressed.

Observation of a magnified phase shift and 
sensitivity improvement
Figure 2 depicts the main experimental results. Each data point is an 
average of eight experimental cycles. The small data sample shows 

that the method works well without requiring prohibitively large 
data samples. As can be seen from the fit errors in fig. S1, single 
shots would be enough for some applications. In Fig. 2A, the red 
circles show a rapid phase change when 51.4 and 48.6% of the popu-
lation (with a 0.4% SEM) is in states ∣2⟩ and ∣1⟩, respectively. The 
population of 51.4% is about 3 SEM and 1 SD from an equal parti-
tion. Here, ϕ is scanned around the working point ϕ = π, as sug-
gested by the theoretical model. In contrast, the green and blue 
circles illustrate the case where the population is in state ∣1⟩ or ∣2⟩. 
Thus, a conventional phase measurement from a single-state interference 
follows a linear phase accumulation process without amplification. 
Figure 2A also displays the SEM of the measured interferometric 
phase, which increases slightly around the working point. Taking 
into account the increase in slope and noise, we estimate within the 
steep slope region an improvement in the measurement sensitivity 
of 8.8 dB compared to the best conventional counterpart (inter-
ferometry with ∣2⟩) experiencing the same noise floor. The direct 
comparison of the four data points connected by black dashed lines 
in Fig. 2A is highlighted in Fig. 2C (see the detailed sensitivity cal-
culation in the Supplementary Materials). Figure 2B illustrates the 
geometric character of phase amplification by removing the DP to 
isolate the GP. The phase remains rigid until it changes rapidly 
around ϕ = π. Figure 2D presents the analytical results for the inter-
ference phase across various population distributions, predicting 
the phase change depicted in Fig. 2A.

To better understand the reason for the metrological improve-
ment, we explain how phase measurement noise depends on ϕ in 
Fig. 2A. When ϕ approaches π (see Fig. 3A), the visibility slowly di-
minishes following theory, v2 = 1 − 4sin2(θ∕2)cos2(θ∕2)sin2(ϕ∕2) 
(9,  10). In an interferometer only limited by quantum noise, the 
theory predicts an increase in phase measurement noise propor-
tional to 1∕v as the extraction of the low-visibility phase becomes 
more difficult. However, practical matter-wave interferometer im-
plementations suffer from additional technical noise sources. Figure 
3B plots measured phase error as a function of visibility (red circles) 
together with two theoretical models. The solid blue line shows the 
1∕v scaling in the phase error that one would expect for an interfer-
ometer to operate at the SQL. The dashed red line shows the same 
model with the addition of a technical noise of 0.1 rad. This modifi-
cation of the 1∕v model agrees well with the data points that show 
the dependence of the phase measurement uncertainty with respect 
to the visibility (see Fig. 3B). Note that as θ ≠ π∕2, the divergent 
part of Fig. 3B is unreachable as there is a minimum visibility value 
(highlighted in both panels).

Accordingly, the uncertainty for the phase measurement has 
two components: fundamental atom shot noise or quantum noise 
that scales with the reduction in visibility, and technical noise, 
ΔΦ2

T
= ΔΦ2

quantum
+ ΔΦ2

technical
. The measurement uncertainty for 

phase ϕ, which is the minimal phase that can be resolved, is 
given by

For large enough values of G = �ΦT
∕�ϕ, the technical noise does 

not contribute considerably to the sensitivity and Δϕ ≈ ΔΦquantum ∕G. 
In that case, only quantum noise limits the sensitivity. In contrast, 
when using one internal state, the technical noise limits the sensitivi-
ty. We offer a derivation of Eq. 5 in the Supplementary Materials.

Δϕ =
ΔΦ

T

∣�ΦT
∕�ϕ ∣

(5)
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Comparison with theoretical predictions
Figure 4A shows how the estimated metrological gain depends on the 
relative rotation ϕ for selected values of the population in states ∣1⟩ and 
∣2⟩. To calculate this, we compute the phase change uncertainty as a 

function of ϕ using the model ΔΦ2
T
=

�
v
√
NA

�−2

+Φ2
technical

, 

which agrees with the experimental data previously discussed. In ad-
dition, we evaluate the slope G = �ΦT

∕ �ϕ from Eq. 3. As a reference 
to define the metrological gain, we use the measurement uncertainty 
for phase ϕ obtained when operating the interferometer at P2 = 1 (the 
black pentagon in Fig. 4A). We estimate a metrological gain of ap-
proximately 10 dB around the working point ϕ = π when P2 = 0.514. 

A

B

C

D

Fig. 2. Experimental results of the GP enhancement. In (A), we measure the interference phase (red circles) when each wave packet is prepared with 51.4 and 48.6% 
(and 0.4% uncertainty) of the population in states ∣2⟩ and ∣1⟩, respectively. In green and blue circles, phase measurements using single-state interference demonstrate 
linear phase accumulation. Each data point is an average of eight experimental cycles, and the error bars are the SEM in this subsample. In (B), we remove the DP (esti-
mated analytically from the population distribution in state ∣2⟩) to illustrate the geometric nature of the phase amplification. We compute the dashed purple curve using 
Φ

G
= Φ

T
− Φ

D
, according to the analytical expressions in the main text. In (A) and (B), we choose the appropriate reference phase so that the GP starts at zero, thus match-

ing the geodesic rule. In (C), we gather the two pairs of data points that will be used to calculate the corresponding sensitivities. The raw data for four single shots, repre-
senting these four data points, are shown in fig. S1. We connect each pair of points with a black dashed line as in (A). We obtain 8.8 dB of enhancement in our Δϕ2 
sensitivity estimation. Note that the enhancement comes primarily from the phase amplification that overcomes the minor uncertainty increase (see the discussion ac-
companying Fig. 3). In (D), we display model traces illustrating the transition from single-state to two-state interference, exhibiting the phase amplification.

A B

Fig. 3. Visibility and measurement uncertainty. In (A), we display the visibility of the interference pattern as a function of the relative rotation. The populations in the 
∣2⟩ and ∣1⟩ states are measured as 51.4 and 48.6%. The states are not equally populated, and, therefore, the visibility does not reach zero. Instead, the minimal visibility is 
0.025 (see main text). Each data point is an average of eight experimental cycles, and the error bars are the SEM in this subsample. In (B), we present how the phase error 
(SEM) varies as a function of visibility. The data suggest that the measured phase fluctuations do not change over a wide visibility range, which is expected when technical 
noise is the dominant contribution. The red line is derived from a straightforward model where a constant technical noise of approximately 0.1 rad is added to a quantum 

noise component (blue line), which varies as 
�
v

√
N

√
A

�−1

, where v is the visibility, N is the atom number of 5 × 103, and A is the number of experimental cycles (eight). 

Note that the phase error of the data reaches 0.2 rad at low visibility, consistent with the ±0.2 rad presented in Fig. 2C.
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That value is close to 8.8 dB extracted from the experimental results 
(the red star in Fig. 4A). We attribute the difference to an underesti-
mation of the slope due to the lack of sampling resolution in the vicin-
ity of the working point. For reference, we also include a plot of the 
expected results using a single quantum state, for P2 = 0 and P2 = 1, 
which differ because of the difference in the magnetic projection be-
tween states.

In the low atom flux limit, the quantum noise is relatively large (29). 
This limits the metrological gain that can be achieved by GP amplifica-
tion. We anticipate that a high-flux atom interferometer (19) will alle-
viate this limit and increase the impact of the GP amplification. In Fig. 
4B, we show how the metrological gain increases with N. Furthermore, 
if N is large and the population ratio is closer to one (see the P2 = 0.501 
case), the metrological gain could be even higher (up to 40 dB in the 
blue solid curve) because of a steeper phase response. We assume that 
the technical noise is the same (0.1 rad) when calculating these predic-
tions. In Fig. 4B, we also include dashed black and red curves showing 
the prediction of a technical noise of 0.01 rad as an example of what 
happens with smaller values of technical noise. In this case, our tech-
nique still offers metrological improvement. However, the atom flux 
threshold upon which we start to observe it increases.

DISCUSSION
We have demonstrated that atom interferometry using matter waves 
with internal degrees of freedom (so-called clock interferometry) 
can be metrologically advantageous. This improvement is due to the 
GP amplification that arises from noncyclic evolution, which results 
in a steep phase response that is not accompanied by a proportional 
rise in noise. We experimentally demonstrated 8.8-dB metrological 
improvement compared to the case without GP amplification. We 
estimate that tens of decibels of enhancement could be attained by 
increasing the atom flux and adjusting the ratio between the inter-
nal states. Since long lifetime clock transitions have been used for 

matter-wave interferometry (30), we anticipate that our scheme 
would offer substantial capabilities in pushing the limits of matter-
wave sensing capabilities (3, 31). In summary, this work offers in-
sights into the potential of GP amplification to boost metrological 
sensitivity and may be implemented in numerous applications.

As an outlook, let us emphasize that this work should be regarded 
as a proof-of-principle experiment highlighting opportunities for 
progress in sensors based on the noncyclic evolution adhering to the 
geodesic rule. An additional advantage not discussed here is the po-
tential for fast phase accumulation due to the possibility of nonadia-
batic GP accumulation (32–34). Further development is required to 
adapt this method to different physical observables that one would like 
to measure, where any observable that changes the “tick rate” of the 
clock by a differential interaction with its two levels may be detected, 
e.g., dc and ac Stark shifts, if there exists a gradient across the interfer-
ometer. For example, one may envision the magnetic gradient used in 
this work as analogous (6, 10) to a difference in proper time that a 
gravitational field would produce and our technique as comparing the 
tick rates of a quantum clock (represented by the internal states) in a 
spatial superposition (probing two regions of space). Therefore, the 
experimental scheme could work as a gravitational sensor if high-
precision clocks capable of resolving the redshift are used (35, 36). 
Thus, the technique introduced here may be suitable for studying the 
interplay between general relativity and quantum mechanics [and po-
tentially testing exotic concepts such as the discreteness of time (37)]. 
Last, the method described here can be combined with other quantum 
noise reduction technologies, such as spin squeezing (38).

MATERIALS AND METHODS
Detailed experimental scheme
In Fig. 5, we present the details of our experimental procedure. This 
includes the splitting of a single BEC wave packet into a pair in differ-
ent locations (steps 1 to 3), the halt of their mutual velocity (step 4), 

A B

Fig. 4. Metrological gain with different experimental parameters. In (A), we present the estimated metrological gain, Δϕ
(
P2=0.514

)
∕Δϕ

(
P2 =1

)
, with respect to the 

standard single-state interferometer (the entire population in state ∣2⟩, P2 = 1 ) versus the relative rotation ϕ. The red point represents the experimental measurement of 8.8 dB 
when P2 = 0.514 and ϕ ≃ π, while the blue point represents the reference value P2 = 1. We perform both measurements using N = 5 × 103 atoms. The red, blue, and green 
solid curves indicate the theoretical prediction when P2 = 0.514, P2 = 1, and P2 = 0, respectively, assuming a technical noise of 0.1 rad. Because of the state’s different mag-
netic projections, the last two differ by 6 dB. The gray area around the red solid curve represents the results when considering a 0.4% uncertainty in the internal populations. 
Another uncertainty source is the magnetic gradient fluctuations that we estimate to give rise to a 2% uncertainty in ϕ (smaller than the data points width), consistent with 
previous calculations [specifically in (20, 45); see the Supplementary Materials]. In (B), we show the estimated metrological gain, relative to the P2 = 1 case, as a function of the 
number of atoms N. The red and blue solid curves represent the cases where P2 = 0.514 and P2 = 0.501, and ϕ = π. The latter generates higher metrological gain due to a 
higher phase-change slope, as pointed out in Eq. 3. Note that the experimental point is lower than the theoretical curve as it was not taken exactly at ϕ = π. All solid curves 
involve an estimated technical noise of 0.1 rad, which is realistic for a miniaturized apparatus (39, 46). Dashed curves show the prediction for a technical noise of 0.01 rad.
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the initiation of a two-level superposition inside each wave packet 
(step 5), the introduction of a relative phase (step 6), and the genera-
tion of an interference pattern during the time-of-flight process (step 
7). Our experiment leverages an atom chip setup as discussed in the 
literature in (39). We start by establishing a BEC composed of approx-
imately 104 rubidium-87 atoms in the state ∣2⟩ ≡ ∣F = 2,mF = 2⟩. 
This BEC is roughly 90 μm beneath the chip surface in a magnetic 
trap. After releasing the BEC atoms from the trap, the entire experi-
mental sequence occurs in a homogeneous magnetic bias field of 
36.7 G in the direction y (with z being the direction of gravity). This field 
establishes an effective two-level system, with ∣1⟩ ≡ ∣F = 2,mF = 1⟩ 
and ∣2⟩ ≡ ∣F = 2,mF = 2⟩, through the nonlinear Zeeman effect. 
Here, Eij = E21 is approximately h × 25 MHz (where i and j are the 
values of mF, all within the F = 2 manifold, and h is the Planck con-
stant), and E21 − E10 is approximately h × 180 kHz.

Next, we introduce an RF pulse with a typical duration of 10 μs, 
resulting in a rotation of θ = π∕2. This prepares a spin superposition, 
( ∣1⟩+∣2⟩)∕

√
2, between the ∣2⟩ and ∣1⟩ states. Then, a magnetic gradi-

ent pulse, represented as �B∕�z and lasting T1 = 4 μs, is applied. This 
pulse, produced by currents in the atom-chip wires, facilitates Stern-
Gerlach splitting, where different spins experience differential forces. 
To enable interference between the two wave packets (given ∣2⟩ and 
∣1⟩ are orthogonal), a second π∕2 pulse (TR2) is applied to mix the 
spins. To stop the relative velocity of the wave packets, a subse-
quent magnetic gradient pulse (T2) is used. This generates differential 
forces for the same-spin states positioned differently. A spatial 

superposition of two wave packets in state ∣2⟩ now exists (separated 
along the z axis). Note that during T2, the ∣1⟩ state of the two wave 
packets is expelled from the experimental region.

The θ control (introduced in Fig. 1A) is achieved using a third RF 
pulse with a duration of TR3 (referred to as TR when discussing Fig. 
1). The relative rotation, ϕ, between the wave packets can be adjusted 
with a third magnetic field gradient, lasting TG. The wave packets 
then undergo expansion and overlap to produce the interference 
pattern, with a time of flight of approximately 10 ms (substantially 
exceeding the reciprocal of the trap frequency, roughly 500 Hz). 
Last, we capture an image through absorption imaging (see fig. S3). 
We offer a simulation of the experimental procedure in the Supple-
mentary Materials.

Generation of magnetic gradient pulses
Three parallel gold wires on the chip surface produce magnetic gra-
dient pulses. These wires have a length of 10 mm, a width of 40 μm, 
and a thickness of 2 μm. The current of the chip wire is generated by 
a simple 12.5 V battery and is modulated using a homemade current 
shutter. The three parallel gold wires are spaced 100 μm apart (cen-
ter to center), with the same current flowing through them in alter-
nating directions. In contrast with using a single gold wire, this 
three-wire configuration creates a 2D quadrupole field at z = 100 μm 
below the atom chip. Given that magnetic field fluctuations are 
proportional to the field strength and the primary source of instabil-
ity stems from the gradient pulses (since the bias fields from 

B CA

Fig. 5. Detailed scheme of the clock interferometer. In (A), we show the full experimental sequence, depicted schematically (not to scale). The experiment takes place 
in free fall along the z axis. In (B), we present the evolution of the states along the sequence. After releasing the atoms from the trap, one RF π∕2 pulse (TR1) creates an 
equal superposition of the ∣2⟩ ≡ ∣F = 2,m

F
= 2 ⟩ and ∣1⟩ ≡ ∣F = 2,m

F
= 1 ⟩ states (step 1). These two spin states are then exposed to a differential force created by a mag-

netic gradient pulse �B∕�z of duration T1 (step 2), leading each state to different positions and velocities. A second π∕2 pulse (TR2) (step 3) mixes the spins in each wave 
packet. Then, a second magnetic gradient pulse (T2) (step 4) yields differential forces again to stop the wave packets. During T2, the wave packets’ ∣1⟩ state component is 
pushed outside the experimental zone. The system then consists of two wave packets in the ∣2⟩ state (separated along the z axis, with zero relative velocity) as in the begin-
ning of Fig. 1E. Last, the experiment unfolds following Fig. 1E description (here steps 5, 6, and 7). In (C), we show the states’ evolution on the Bloch sphere’s surface during 
the sequence. After preparing two coherent wave packets at distinct locations (step 4), an RF pulse of duration TR3 (TR in Fig. 1) is applied to shift the two vectors from the 
north pole to the equatorial plane of the Bloch sphere to initialize the internal superposition (step 5). A magnetic field gradient of duration TG induces the relative phase 
ϕ (step 6), and the interferometric measurement is done via fitting the interference pattern (step 7).
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external coils are highly stable), placing the atoms near the center 
(or zero point) of the quadrupole field effectively reduces the 
magnetic-field noise. This is achieved by the three-wire configura-
tion while preserving the magnetic gradients’ strength.

Interferometric phase extraction
As stated in the main text

After the wave packets expand on the free space, the width of the 
spatial components, ψ

A
 and ψ

B
, of the wave packets, A and B, be-

comes much bigger than the separation. Thus, ∣ψ
A
∣2, ∣ψ

B
∣2, and 

ψ
A
ψ

B
 can be approximated by a Gaussian wave packet; consequently

where σz is the Gaussian width of the combined wave packet ob-
tained after the time of flight,  a normalization constant, and v 
corresponds to the visibility given by

To calculate the interference pattern’s spatial frequency and 
phase, we must consider that

The term arg⟨a ∣b⟩ equals the total phase ΦT and can be directly 
evaluated. To calculate arg

(
ψ

A
ψ

B

)
, we must consider the time evo-

lution of a Gaussian wave packet in free space

where α(t) = 1 + i ℏt

2mσ2
 describes the expansion of the wave packet 

after a time-of-flight t, m is the mass of a 87Rb atom, and ℏ is the re-
duced Planck constant. We use this equation to evaluate the interfer-
ence of two wave packets separated by d

After a long evolution, t ≫ mσ2 ∕ℏ, we can approximate α ≈ i ℏt

2mσ2
. 

In this limit

This leads to the expression

with λ = ht∕(md). Last, combining Eq. 7 and Eq. 13, we re-
obtain Eq. 2

with σ2
z
= σ2 ∣α∣2.

For absorption imaging, we assume that the wave packet is cen-
tered in zcom and an extra relative phase 2πzref ∕λ (which shifts the 
phase by a fixed value), giving rise to the profile

where c is the background optical density of the absorption imaging. 
Note that what we perform is not a state-selective measurement that 
distinguishes between the two internal states. Thus, the internal su-
perposition can be measured properly, as each state is equally ac-
counted for to form the final interference pattern.

We provide examples of this fit and further discuss fit errors in 
the Supplementary Materials. In particular, we show that the fit er-
rors are consistent with what is expected by theory by comparing 
them with Monte Carlo simulations. We find that the fit error we 
obtain from the raw data is similar to the one expected from sam-
pling the distribution with N atoms.

Alternative interpretations
Note that a mathematical analysis also supports an alternative expla-
nation in which one interprets the experiment as beating two com-
peting patterns [see (11)]. Although this interpretation is as valid as 
that regarding the GP, we find the latter to be more attractive when 
describing the origin of the steep slope. The reason is that the GP 
emerges naturally as a phase shift from the interference pattern. This 
interpretation is also easier to generalize to other contexts with no 
spatial pattern. Last, another interpretation of the results could be in 
terms of phase vortices (40–44). Equation 3 for the interferometric 
phase ΦT exhibits a vortex when θ = π∕2 and ϕ = π. Consequently, 
ΦT changes rapidly with respect to ϕ near the vortex, giving rise to 
the increasing slope.

We must also point out that similar amplification phenomena 
can occur in various physical situations. As an example, we provide 
an alternative description of a clock interferometer using plane 
waves in the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5
Supplementary Text
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