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Multimode entanglement is a key resource in quantum information processing and quantum
metrology, such as high dimensional cluster-state generation and distributed quantum sensing. At
the same time, quantum nonlocality is a remarkable feature of quantum theory and has applica-
tions in quantum teleportation and Bell inequality tests. Exploring the intersection of these two
aspects of quantum theory, we here investigate experimentally the nonlocal phase modulation of
multimode, continuous-variable entangled twin beams. We modulate the phase of the entangled
probe and conjugate beams of light, produced in a four-wave mixing interaction in hot Rb vapor,
with a pair of electro-optical phase modulators. While a single-phase modulator in either one of
the twin beams reduces the entanglement (squeezing) signal, we find that the pair of modulators
interfere nonlocally to modify the beam correlations. The nonlocal modulation of the beams creates
quantum correlations among frequency modes of the multimode fields.

In recent years, multimode entanglement has attracted
great interest in quantum computing [1–3], quantum
metrology [4–6], and quantum information processing
in general [7]. Examples include Gaussian-Bose sam-
pling [8–10] and distributed quantum sensing [4–6], which
rely on linear mixing and splitting of squeezed light
sources. The technical challenge in these applications
increases as the number of modes increases. Multimode
entanglement in the frequency domain, such as in quan-
tum optical frequency combs [11–14], provides scalable
and compact sources for those applications.

A remarkable feature of quantum theory is the concept
of nonlocality, whereby entangled particles interact even
when separated by large distances. For a pair of entan-
gled photons, the nonlocal character of quantum theory
can manifest itself through Bell inequality tests [15–17],
as well other effects such as nonlocal dispersion cancel-
lation [18, 19], nonlocal quantum erasing [20], nonlocal
aberration cancelation [21], and nonlocal phase modula-
tion [22, 23].

Twin beams play an important role in continuous-
variable (CV) quantum information processing [24] by
enabling deterministic generation, manipulation, and de-
tection of entangled light. The generation and con-
trol of CV entangled states of light find many applica-
tions in quantum erasing [25, 26], quantum steering [27],
quantum imaging [28], quantum key distribution pro-
tocols [29], and cluster-state based quantum comput-
ing [30], among others. The electro-optical phase modu-
lator (EOM) is a key element in many of these schemes.
At the classical level, the ideal EOM simply provides
a temporal phase modulation of the complex envelope
of the incident light field, resulting in the generation of

spectral sidebands if the modulation is periodic. Recent
works employ an EOM for generating high-dimensional
quantum states [30].
In this Letter, we experimentally investigate the effect

of nonlocal phase modulation of multifrequency modes
entangled CV beams. In nonlocal phase modulation, two
distant EOMs, each operating on one of a pair of entan-
gled fields, act cumulatively to determine the apparent
modulation depth. Nonlocal modulation in the discrete-
variable (DV) regime is observed in the intensity corre-
lations between spatially-separated entangled twin pho-
tons [23]. In the CV framework explored here, we are
concerned with amplitude correlations and phase corre-
lations between quadrature amplitudes of the twin fields.
We describe our investigation into how an EOM affects
the squeezing signal between twin beams and how the
relative phase between a pair of EOMs, each acting on
one of the twin beams, changes the correlations between
neighboring frequency modes of the conjugate joint field
quadratures.
We consider two-mode squeezed states produced in the

double-lambda, four-wave-mixing (4WM) scheme illus-
trated in Fig. 1. For input fields âp (probe) and âc (con-
jugate) entering the 4WM medium, the output fields are:

Âp = Gâp + gâ†c (1)

Âc = Gâc + gâ†p, (2)

where G is the amplitude gain, and g2 = G2 − 1. To
express the fields after they go through the EOMs, we
consider a simple classical model for the phase mod-
ulators [31]. We assume both phase modulators are
ideal and are periodically modulated at the same mod-
ulation frequency Ω. In the time domain, the EOM’s
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transfer functions are hi(t) = exp[iπmi gi(t)], where
i = p, c (p or c for probe or conjugate, respectively);
mi is the modulation depth; and gi(t) = sin(Ωt + ϕi),
with ϕi being a driving phase. The exit fields are then:
Â′

p = exp[iπmpgp(t)]Âp and Â′
c = exp[iπmcgc(t)]Âc. We

can then define the joint quadrature operators: X̂± =
(X̂p ± X̂c)/

√
2 and P̂± = (P̂p ± P̂c)/

√
2, where X̂p,c =

(Â′
p,c + Â′ †

p,c)/
√
2 and P̂p,c = −i(Â′

p,c − Â′ †
p,c)/

√
2 are the

usual amplitude and phase quadratures, respectively, of
the fields. The noise of the joint quadratures can be cal-
culated and is found to be

⟨X2
−⟩ =

1

2
{G2 + g2 − 2gG

× cos[π(mp sinφ+mc sin(φ+ ϕ))]},
(3)

where φ = φ(t) = Ωt+ ϕp, and ϕ = ϕc − ϕp is the phase
difference between the two EOMs. Averaging over one
modulation period gives

⟨X2
−⟩ =

1

2

{
G2 + g2 − 2gG

×J0

(
π
√
m2

p +m2
c + 2mpmc cosϕ

)}
,

(4)

where J0 is a zeroth order Bessel function, and the over-
bar represents a time average. It is straightforward to
show that ⟨P 2

+⟩ = ⟨X2
−⟩. If the modulation depth of the

EOMs is equal (mp = mc = m), then

⟨X2
−⟩ =

1

2

{
G2 + g2 − 2gGJ0

(
πm

√
2 + 2 cosϕ

)}
. (5)

If both EOMs are turned off (m = 0), then ⟨X2
−⟩ =

(G − g)2/2. For any G2 > 1, two-mode squeezing is

observed since this implies ⟨X2
−⟩ < 1/2, which is the

shot-noise level (SNL). In deriving Eq. (5), we made no
assumptions regarding the spatial separation of modes âp
and âc. Equation (5) implies that maximum squeezing
between the two fields is obtained when the two phase
modulators are off. Turning the modulators on will,
in general, reduce the degree of squeezing. For a high
enough modulation depth, squeezing may be eliminated
as the quadrature noise will exceed the SNL.

Three cases are particularly of interest: the EOMs
drove in (ϕ = 0◦) and out (ϕ = 180◦ and ϕ = 120◦) of
phase with each other. When ϕ = 180◦, Eq. (5) clearly
shows that the modulation imparted to one of the twin
beams cancels the modulation experienced by the other
twin beam; and two-mode squeezing, at the same level
as obtained with the EOMs off, is recovered. Comparing
Eqs. (4) and (5), we see that, when the two EOMs are
in phase, they produce the same amount of squeezing as
only one modulator operating at twice the modulation
depth (mp = 0 and mc = 2m, or vice-versa). And for
ϕ = 120◦, Eq. (5) predicts that the two EOMs should be-
have as a single modulator driven at a modulation depth

of m. More generally, the effect of two-phase modula-
tors on the joint quadrature noise is similar to that of
a single modulator operating at an effective modulation

depth of
√
m2

p +m2
c + 2mpmc cosϕ. In other words, the

modulators act cumulatively to determine the effective
modulation depth, analogously to the DV case [22, 23].
The cumulative effect is nonlocal. That is, it is indepen-
dent of the distance between the EOMs.

Figure 1 shows the experimental setup and a level di-
agram of the double-lambda 4WM scheme. The setup is
similar to the one described in [28]. A 12 mm-long Rb
vapor cell is heated to 123◦C. A single pump beam, tuned
to the 85Rb D1 line, is split into two beams: one is sent
through the vapor cell along with a probe seed beam to
generate the local oscillator (LO) beams, and the other
generates the two-mode squeezed vacuum states. The
probe seed is derived from the pump beam by double
passing a small portion of the pump through a 1.5 GHz
acoustic-optic modulator. The pump and probe intersect
inside the cell at an angle of 7 mrad. A double-lambda
4WM process uses the χ(3) nonlinearity of the Rb vapor
to convert two pump photons into one probe photon and
one conjugate photon. (The squeezed beams are vacuum
seeded.). The probe beam experiences a typical gain of 3.
The non-degenerate probe and conjugate beams are on
opposite sides of the pump and in a two-mode squeezed
state. Probe and conjugate beams pass through identical
EOMs driven with a 200 kHz sine wave. The EOMs are
driven synchronously by separate outputs of the same
function generator, and their relative phase can be ad-
justed by the function generator. To provide access to
measurements of the phase quadrature, the modulated
probe and conjugate beams are sent separately to two
balanced homodyne detectors, one for the probe and an-
other for the conjugate.

In the homodyne detectors, the probe and conjugate
beams are mixed with a LO beam on a 50/50 beamsplit-
ter with fringe visibilities > 97%. The relative phases
θp,c between the LOs and the probe/conjugate fields are
adjusted by mirrors mounted on piezoelectric transducers
(PZT) in order to select the quadrature to be detected
in each beam. The outputs of the homodyne detectors
are directly measured with matched photodiodes with
quantum efficiencies of 95%. The path length from the
vapor cell to the optical detectors for probe and conju-
gate beams are approximately matched. However, due to
the different group velocities of the probe and conjugate
beams in the atomic vapor [32], the two fields are op-
tically delayed by approximately 10 ns. To compensate
for this delay, we add an electronic delay line after de-
tection by adjusting the relative BNC cable lengths. The
photocurrents are amplified and then measured with a
1 GHz digital sampling oscilloscope. The measured time
traces are digitally post-processed in order to determine
the power spectrum and joint quadratures of the twin
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beams.

FIG. 1. Experimental setup and energy level diagram (inset)
of the 4WM process in 85Rb. The pump beam (P) gener-
ates twin probe (Pr) and conjugate beams (C) in a two-mode
squeezed state. BS are 50/50 nonpolarizing beamsplitters;
EOMs are electro-optical phase modulators; PZT is a piezo-
electric transducer; DSO is a 1 GHz digital sampling oscil-
loscope; and LO are local oscillator fields for the homodyne
detection schemes.

The homodyne signal as a function of local oscillator
phase gives a generalized quadrature: X̂i cos θi+P̂i sin θi.
If we subtract the homodyne signals, we measure the
noise power of the joint quadrature X̂θ = X̂θp − X̂θc ,
where θ = θp + θc. A typical noise spectrum as a func-
tion of the phase θ is shown in Fig. 2. Squeezing is ob-
served when θ = 0 (point I in the figure). A frequency-
dependent squeezing spectrum is observed by locking the
LO phase θ to point I by a noise locking technique [33].
(Locking the phase to point III, would give us the quadra-
ture P̂θ = P̂θp − P̂θc .) Because the temporal modula-
tion imparted by the EOMs to the beams may disturb
the locking signal, we pulse the driving signal from the
function generator to the EOMs at 40 Hz. The driv-
ing pulses are square pulses with a width of 12.5 ms.
The noise of the subtracted photocurrents therefore al-
ternates between the squeezing signal observed with the
EOMs on and with the EOMs off. The signals from the
probe and conjugate homodyne detectors consisted of 106

values sampled over 10 ms captured during the time the
EOMs were on. The measurement window of 10 ms is
purposely smaller than the pulse width in order to avoid
transient edge effects in the data. We then used Welch’s
method [34] to obtain the final power spectrum of the
measured noise.

Typical squeezing spectra are shown in Fig. 3. When
the EOMs are off (Fig. 3a), the squeezing spectrum ex-
tends over a bandwidth of approximately 15 MHz. Turn-
ing one EOM on (on either the probe or conjugate beam)
reduces squeezing at all frequencies. At twice the modu-
lation depth, squeezing is eliminated, with the noise well
above SNL. When both EOMs are on, the effect of the
EOMs on the nonlocal entangled signal depends on their
relative phase (Fig. 3b). When the EOMs are in phase,
they act together to reduce the squeezing signal, produc-
ing a spectrum similar to that of a single EOM with twice

FIG. 2. Noise power of the sum (dashed blue) and difference
(solid black) of the quadratures measured by the homodyne
detectors as the phase θ is varied. In both cases, the noise
is analysed at a frequency of 1 MHz. By locking the phase
to points I (θ = 0), II (θ = π/4) or III (θ = π/2), we can
measure the joint quadratures XX, XP or PP, respectively,
of the twin beams.

the modulation depth acting on only one of the beams
(shown in Fig. 3a). When the EOMs are 180◦ out of
phase, they cancel each other, giving a squeezing signal
similar to that observed when the EOMs are turned off.
And when the EOMs are dephased by 120◦, the squeezing
spectrum is similar to the spectrum seen with only one
EOM on. These results are in complete agreement with
the predictions of our model. They are the CV analog
of the nonlocal modulation effect reported in Ref. [23] in
the DV regime.

We next studied the dependence of the squeezing sig-
nal (variance of X̂−) on the relative phase difference ϕ of

the EOMs. To calculate ⟨X̂2
−⟩, we first broke the mea-

sured time traces into 2000 equal-size, nonoverlapping
segments of 5µs, then applied a strategy similar to the
one described in Ref. [35] to each segment. We spectrally
filtered X̂− by multiplying the time segments by the win-
dow function: W (t) = (1/σ

√
2π) cos[ω0(t−t0)] exp[−(t−

t0)
2/2σ2], where t0 is the midpoint of the temporal seg-

ment, σ is the window width, and ω0 is the center fre-
quency of the limited bandwidth where the squeezing is
maximized. We integrated each filtered segment to ob-
tain 2000 values of X̂−. We then calculated the variance

of these values to obtain ⟨X2
−⟩. Figure 4 shows the nor-

malized noise variance of X− (relative to shot noise) as
a function of ϕ. We see that the noise variance, initially
above SNL for ϕ = 0◦, decreases with increasing phase,
dropping below SNL for ϕ ≳ 120◦. The noise variance is
smallest at 180◦ phase difference, where it coincides with
the variance measured when the EOMs are off, within ex-
perimental uncertainty. Equation (5) describes well the
experimental data. A fit of Eq. (5) to the data gives
m = 0.18 and G2 ≈ 3.2; these values are in close agree-
ment with the applied modulation depth (m = 0.12) and
estimates of the probe gain. The small disagreement be-
tween the fitted curve and experimental data are likely
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FIG. 3. (a) Squeezing spectra obtained with both EOMs
turned off (blue line) and with one EOM on, but at differ-
ent modulation depths: m (green line) and 2m (black line);
(b) Squeezing spectra for both EOMs running, at a modula-
tion depth m, in phase (ϕ = 0◦) and out of phase (ϕ = 180◦

and ϕ = 120◦). In all cases, m = 0.096 and the red line in-
dicates the shot noise. A plot of typical squeezing and shot
noise spectra along with the electronic noise can be found in
the Supplemental Material.

due to the simplicity of the model that, for example, does
not include the unavoidable losses in the experiment [36].
Another important source of disagreement is related to
mechanical drifts of the homodyne optical setups during
data acquisition, which reduce the fringe visibilities and
increase the noise variances.

Full characterization of the two-mode squeezed states
requires determining the covariance matrix C of the
fields. In the ordered basis (X̂p, X̂c, P̂p, P̂c):

C =

[
CXX CXP

(CXP)
T CPP

]
, (6)

where CXX, CXP, and CPP are 2 × 2 matrices. The co-
variance matrix of the two-mode squeezed state is sym-
metric. CXX and CPP are associated with the amplitude
XX and phase PP joint quadratures of the twin beams,
respectively, while CXP is the mutual correlation matrix
between their X and P quadratures. When the EOMs
are off, CXP = 0, so the covariance matrix is block di-
agonal. Turning on the phase modulators couples the X
and P quadratures of the fields, and CXP ̸= 0.
We can gain further insight into the characteristics of

the nonlocal modulation of the EOMs by measuring the

FIG. 4. Joint quadrature variance ⟨X2
−⟩ normalized by the

shot noise variance as a function of the phase difference ϕ
between the EOMs. The solid blue line is a fit of Eq. (5)
to the experimental data (red full circles): f(t) = 2a − 1 −
2
√
a− 1 ∗

√
aJ0(πb

√
2 + 2 cosϕ) + c, with fit parameters a =

3.2, b = 0.18 and c = 0.49; c is an offset added to partially
account for losses in the system. The dotted black line is the
shot noise level (SNL). For the window function used to filter
the temporal data, we used: W (t) = (1/σ

√
2π) cos[ω0(t −

t0)] exp[−(t−t0)
2/2σ2], with σ = 10µs and ω0 = 2π×1 MHz.

Also shown is the measured variance when the EOMs are off;
the width of the colored band corresponds to the measurement
uncertainty. Uncertainty bars are one standard deviation.

XP quadrature of the covariance matrix for the twin
beams. In order to do that, we lock the joint quadra-
ture phase to θ = π/4 (point II in Fig.2). The locking
scheme is detailed in the Supplemental Material. We de-
tected the noise signal of the probe and conjugate beams
with the same homodyne detection technique previously
described. To recover the XP covariance matrix from
the acquired time traces at different frequency modes,
we need to filter frequency bins for analysis. That is,
all the noise whose frequencies are contained in an in-
terval [ω − ∆ω/2, ω + ∆ω/2] is grouped into a single
frequency bin of width ∆ω and centered on frequency
ω. The temporal data is Fourier transformed to the fre-
quency domain, a 180 kHz rectangular filter is applied
to each frequency mode at a time, and then the inverse
Fourier is transformed back to the time domain. We thus
derived 49 nonoverlapping frequency modes distributed
over a bandwidth of 10 MHz at steps of 200 kHz. The
filtered probe and conjugate data are joined into one ma-
trix where each column represents the time domain data
of a single frequency mode. Calculating the covariance
between the 98 columns of that matrix gives a 98x98 co-
variance matrix quadrant for the XP quadrature of the
twin beams.

Figure 5a shows the measured XP covariance matri-
ces. When the beams are not modulated, their X and P
quadratures are not coupled. We also do not observe any
correlations when the EOMs are operated at 180◦ phase
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difference. However, at 0◦ phase difference, the X and P
quadratures of the probe and conjugate beams are cou-
pled, and positive correlations can be seen. The double
diagonal structure in the covariance matrix corresponds
to the frequency sidebands introduced by the EOMs and
demonstrates the multimode nonclassical nature of the
phase-modulated joint field quadratures. A single EOM,
at twice the modulation depth, produces similar correla-
tions to those produced by the two in-phase EOMs.

In all results presented so far, both EOMs were placed
in the path of the twin beams. This configuration is of in-
terest for quantum information processing applications,
such as the production of cluster states or quantum key
distribution. However, other applications, such as quan-
tum erasing and distributed quantum sensing, might re-
quire the EOMs placed in the LO beams instead, or in a
combination of one EOM in a LO beam and the other in
one of the twin beams [25, 26]. In Fig. 5(b), we show the
results obtained when both EOMs are placed in the LO
oscillators’ paths. It is clear that the effect of the EOMs
on the measured beam correlations is the same as the one
observed with the EOMs placed in the beams, except for
a change of sign in the correlations. However, placing
one EOM on the probe beam and the other EOM on the
LO of the conjugate beam causes a different effect on
the measured correlations, as shown in Fig. 5(c). In this
case, the EOMs cancel each other when they are in phase
and couple the X and P quadratures when they are out
of phase. These results can be understood by making
use of an analogy to an SU(1,1) interferometer. What
is generally referred to as an SU(1,1) interferometer [37]
would entail twin quantum-correlated beams generated
by a nonlinear interaction (such as 4WM), some phase
shift on one or both of the twin beams, followed by re-
combining these beams in a second nonlinear interaction.
The phase shift that is read out in such an interferometer
is converted to an intensity signal in the second nonlin-
ear interaction region. If the phase at the second inter-
action [2θpump–(θprobe + θconjugate) = π] is undisturbed,
then the probe and conjugate beams are re-converted into
pump photons, and no light appears in the probe and
conjugate outputs. An additional phase shift appears as
a non-zero output intensity in the twin beams. If one
views the arrangement in Fig. 1 as a “truncated” version
of the SU(1,1) interferometer [38], it can be seen to be a
pair of interferometers, both comprised of a (very noisy)
signal beam, plus a LO beam. These interferometers will,
however, have quantum-correlated signals, and any phase
shift written onto one of the beams can be detected at
a sub-shot-noise level in the difference. When one views
the interferometers in this scheme independently, it is
clear that it does not matter if the phase shift is written
onto the “signal” beam, or onto the LO beam – either
way, the homodyne output contains the signal. Because
of the geometry, however, a similar phase shift written
on the LO will appear as a phase shift of the opposite

sign to one written onto the signal beam. (If the signal
and the local oscillator have the same phase shift, the
detector will not see it.)

FIG. 5. Measured XP covariance matrices for (a) both EOMs
on the twin beams, (b) both EOMs on local oscillator beams
and (c) one EOM on the probe beam and the other EOM on
conjugate local oscillator. All panels show the Xp − Pc sub-
subquadrant of their respective XP covariance matrix. In the
two cases where both EOMs are on, their modulation depth
is m = 0.1. The double diagonal structure of the correlations
corresponds to the first-order frequency sidebands due to the
periodic modulation of the beams by the EOMs.

In conclusion, we studied the effects of electro-optical
phase modulation on two-mode squeezing of multi-mode,
continuous variable twin beams. The electro-optical
modulators interfered nonlocally to modify the beam cor-
relations, which were controlled by adjusting the rela-
tive driving phase of the modulators. We found that
the modulators acted cumulatively to determine the ef-
fective modulation depth. We believe that our setup is
a potential platform for further experimental studies on
cluster state generation, quantum erasing, and quantum
compressed sensing. As shown here, the ability to manip-
ulate twin beam correlations via nonlocal phase modula-
tion has important implications for those fields. For ex-
ample, positioning the EOM in the local oscillator should
allow the implementation of compressed sensing for quan-
tum system characterization. Positioning the EOMs in
the local oscillators also brings an experimental advan-
tage, since it avoids the introduction of additional losses
in the signal beams, allowing for larger squeezing sig-
nals. A recent proposal for generating hypercubic clus-
ter states suggests using an EOM to couple different fre-
quency qumodes of two-mode entangled beams [30]. Our
results make it clear that applying twice the modulation
on one EOM is equivalent to an EOM in each entangled
beam, at least when it comes to the structure of a cluster
state.
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