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P H Y S I C S

Realization of a complete Stern-Gerlach interferometer: 
Toward a test of quantum gravity
Yair Margalit1*†, Or Dobkowski1, Zhifan Zhou1, Omer Amit1, Yonathan Japha1, 
Samuel Moukouri1, Daniel Rohrlich1, Anupam Mazumdar2, Sougato Bose3,  
Carsten Henkel4, Ron Folman1

The Stern-Gerlach effect, found a century ago, has become a paradigm of quantum mechanics. Unexpectedly, 
until recently, there has been little evidence that the original scheme with freely propagating atoms exposed to 
gradients from macroscopic magnets is a fully coherent quantum process. Several theoretical studies have ex-
plained why a Stern-Gerlach interferometer is a formidable challenge. Here, we provide a detailed account of the 
realization of a full-loop Stern-Gerlach interferometer for single atoms and use the acquired understanding to 
show how this setup may be used to realize an interferometer for macroscopic objects doped with a single spin. 
Such a realization would open the door to a new era of fundamental probes, including the realization of previous-
ly inaccessible tests at the interface of quantum mechanics and gravity.

INTRODUCTION
The discovery of the Stern-Gerlach (SG) effect (1, 2) was followed 
by ideas concerning a full-loop SG interferometer (SGI) consisting 
of a beam of atoms exposed to field gradients from macroscopic 
magnets (3). However, starting with Heisenberg, Bohm and Wigner 
(4), a coherent SGI was considered impractical because it was 
thought that the macroscopic device could not be accurate enough 
to ensure a reversible splitting process, namely, a complete overlap 
in position and momentum of the two interferometric paths. Bohm 
(5), for example, noted that the magnet would need to have “fantastic” 
accuracy. Englert, Schwinger, and Scully (6–9) analyzed the prob-
lem in more detail and coined it the Humpty-Dumpty (HD) effect. 
They too concluded that for substantial coherence to be observed, 
exceptional accuracy in controlling magnetic fields would be re-
quired. While atom interferometers based on light beam splitters 
enjoy the quantum accuracy of the photon momentum transfer 
(10), the SGI magnets not only have no such quantum discreteness 
but also suffer from inherent lack of flatness due to Maxwell’s equa-
tions. Later work added the effect of dissipation and suggested that 
only low-temperature magnetic field sources would enable an oper-
ational SGI (11). Claims have even been made that no coherent 
splitting is possible at all (12).

Here, we provide a detailed account of recent realizations (13, 14) 
of a full-loop SGI, in which magnetic field gradients act on the 
atom during its flight through the interferometer as originally envi-
sioned. These realizations build upon recent developments of the 
spatial fringe SGI (15, 16). In addition, we show that the full-loop 
SGI can enable a seminal experimental probe: macroscopic-object 
interferometry.

SG interferometry with mesoscopic objects has been suggested 
as a compact detector for space-time metric and curvature (17), 
possibly enabling detection of gravitational waves. It has also been 
suggested as a probe for the quantum nature of gravity (18). These SG 
capabilities may also enable searches for exotic effects like the fifth 
force, or the hypothesized self-gravitation interaction (19–21). In the 
following, we show that such an experiment is, in principle, feasible.

We note that the full-loop SGI configuration (13) has already 
enabled the construction of a unique matter-wave interferometer 
whose phase scales with the cube of the time that the atom spends in 
the interferometer (14). This realization has been suggested as an 
experimental test for the Einstein’s equivalence principle when ex-
tended to the quantum domain (22).

Let us emphasize that a full-loop scheme, with its spin popula-
tion observable, as described here, has several advantages for 
macroscopic-object interferometry, over other suggestions that use 
a spatial interference pattern as their signal. First, a spin population 
observable requires no high-resolution imaging. For massive ob-
jects, this may be crucial. Second, as shown in (14), an SGI can 
achieve a T3 scaling of the phase accumulation, enabling high sensi-
tivity. Furthermore, the SGI allows us to apply magnetic forces 
throughout the interferometer, and a significant splitting may be 
achieved in a few milliseconds or so. Last, and perhaps most impor-
tantly, the spin population observable does not require free propa-
gation to develop, in contrast to a spatial interference signal. These 
reasons provide a crucial advantage when taking into account the 
high decoherence rate expected for macroscopic objects.

We note that high magnetic stability and accuracy may also 
make possible technological and metrological applications such as 
large-area atom interferometry (23), sensitive probing of electron 
transport, e.g., squeezed currents (24), as well as nuclear magnetic 
resonance and compact accelerators (25). We note that as the SGI 
makes no use of light, it may serve as a high-precision surface probe 
at short distances for which administering light is hard. In addition, 
our atom chip setup is compatible with cryogenic environments 
and may hence probe cold surfaces, while laser light may cause un-
wanted heating. Last, know-how described in this work may assist 
to advance also other interferometric configurations that use static 
fields, e.g., electric fields (26, 27).
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The full-loop SGI
In the following, we describe how we obtain a high full-loop SGI 
contrast of 95% by using the particularly accurate magnetic fields of 
an atom chip (28). Following the footsteps of impressive endeavors 
(29–39), and additional recent scientific advancements with spatial 
SGIs (15, 16), this full-loop SGI (13, 14) is, to the best of our knowl-
edge, the first realization of a complete SGI analogous to that origi-
nally envisioned.

A schematic of the full-loop interferometer is presented in Fig. 1 
in the center-of-mass frame and in Fig. 2 in the laboratory frame, 
along the axis of gravity. The full-loop SGI uses four magnetic gra-
dient regions or pulses: splitting, stopping, accelerating back, and 
stopping, the latter two closing a loop in the space-time diagram. To 
the best of our knowledge, all previous SG realizations used only the 
first one or two operations, thereby realizing at most a “half loop.” 
The entanglement of spin with the spatial degrees of freedom per-
sists throughout the SGI, and the magnetic moment associated with 
the spin is used to control the external degrees of freedom, using 
magnetic gradients and the SG effect. The SGI actively recombines 
the wave packets in both position and momentum and uses the spin 
state of the recombined wave packet as an interference signal. This 
is in contrast to the spatial fringe SGI realized in our previous work 
(15,  16), which consists only of splitting and stopping the wave 
packets (thus corresponding to a half loop, to which we added spin 
mixing to allow for spatial fringes to form, in analogy to a double- 
slit experiment).

The recombination in the full-loop SGI is, in fact, required to be 
a time-reversal operation of the splitting process, such that the final 
two magnetic gradients exactly undo the first two. To obtain high 
coherence (or contrast) in the output of a spatial interferometer, 
one must apply stable and accurate operations on the atom, such that 
the final relative distance between the wave packets’ centers, z(2T), 
and the final relative momentum between the centers, p(2T), are 
minimized, where 2T is the interferometer duration. Inaccuracy of 
the magnetic field gradient throughout the particle’s trajectory gives 
rise to imperfect overlap, either in position or momentum, and will 
cause a decay in the resulting interferometric contrast.

The difficulty in maintaining spin coherence due to inaccuracy 
is illustrated by the following simple argument relating to the mo-
mentum splitting [as argued by Heisenberg and others (4, 6, 40)]. 
To achieve macroscopic splitting of the wave packets using a differ-
ential force F acting for a duration T1, the relative momentum 
between the split wave packets FT1 must be much bigger than the 
initial wave packet width in momentum p, i.e., FT1 ≫ p. As each 
part of the wave packet samples a different part of the potential, it 
acquires a different phase. The linear phase spread over the wave 
packet is thus given by ∣∣=∣(ET1/ħ)∣=∣(∂E/∂z)zT1/ħ∣= 
FT1z/ħ ≫ pz/ħ, where z is the initial wave packet width in posi-
tion (p and z are both defined in the z direction) and E is the atom’s 
energy due to the magnetic field. By invoking the uncertainty prin-
ciple, one finds that  may not be made small, further complicating 
the recombination, where a successful recombination requires 
maximizing the overlap integral of the two wave packets. In other 
words, large splitting requires large relative momentum in units of 
the internal momentum width, which corresponds to a large phase 
spread over the wave packet (due to the relation between momen-
tum and phase—eipz/ħ). To achieve high coherence, this phase 
spread originating from momentum splitting has to be undone. If 
the size of the two wave packets is the same, then minimizing p 

ensures to some degree that the phase profile of both wave packets 
is the same, which is sufficient. Note that, in a practical experiment, 
the phase pattern is actually more complex and harder to match 
because of the curvature of the magnetic potential.

The precision with which one has to recombine the wave packets 
is set by the spatial coherence length lz and momentum coherence 
width lp, which we use as a phenomenological model to describe the 
loss of contrast. These measures of coherence are inversely propor-
tional to the momentum and position uncertainties of the atom, p 
and z, and may be defined as (41)

   l  z   =   ħ ─    p    ,  l  p   =   ħ ─    z      (1)

where the momentum and position uncertainties satisfy the un-
certainty relation pz ≥ ħ/2. If the two paths at the output port of 
the interferometer (time t = 2T) are displaced by a distance z(2T), 
then the contrast is expected to drop as   C ∝ exp  [   −  1 _ 2   (z(2T ) /  l  z  )   2  ]    . 
Equivalently, if the two paths are displaced in momentum by 
p(2T), then the contrast reduces as   C ∝ exp  [   −  1 _ 2   (p(2T ) /  l  p  )   2  ]    .

In the case of a minimal-uncertainty Gaussian wave packet with 
a negligible expansion rate, the loss of contrast (or coherence) C due 
to inaccuracy of the recombination process is quantified by the HD 
equation, which is given by (7)

   C = exp  [   −   1 ─ 8     (     z(2T) ─    z     )     
2
  −   1 ─ 8     (     

p(2T)
 ─    p     )     

2

  ]     (2)

(Note a factor 1/2 in our definition of z and p relative to the 
original definition.) This equation is the result of calculating the over-
lap integral between the Gaussian wave functions at the end of the 
interferometer. To keep the contrast close to unity, a “microscopic” 

Fig. 1. The longitudinal full-loop SGI (z position versus time) in the center-of-
mass frame. The interferometer operates for a duration of 2T (on the order of a few 
hundred microseconds) and consists of four magnetic gradient pulses (purple col-
umns). The states ∣1〉 ≡ ∣F = 2, mF = 1〉 and ∣2〉 ≡ ∣2,2〉 are defined along the    ̃ z    axis 
in the Bloch sphere (different from real-space coordinates). The signal is made of 
spin population fringes. The experiment starts with a spin in the    ̃ x    direction, and 
the final measurement is again of the spin in the    ̃ x    direction. The latter is performed 
by mapping the spins from    ̃ x    to    ̃ z    with a /2 rotation and applying a SG gradient to 
separate the populations before taking an image. The same configuration may be 
used for a macroscopic-object interferometer; see the “Testing different aspects of 
gravity” section.
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level of accuracy is required at the end of the interferometer, de-
scribed by the relations ∣z(2T)∣ ≪ z and ∣p(2T)∣ ≪ p. 
Quantitatively, to maintain a contrast of ≃0.99 using FT1/p = 103, 
it turns out that one must control the fields with an accuracy of 
F/F = 10−5 (6, 7), a formidable technical challenge. Addressing this 
challenge is expected to open the door to a wide variety of new ex-
periments for technology and fundamental studies.

Experiment
Our experiment begins by releasing a Bose-Einstein condensation 
(BEC) of about 104 87Rb atoms from a magnetic trap below an atom 
chip (28). We initially prepare the BEC in the state ∣F, mF〉 = ∣2,2〉 
and then create a superposition of the two spin states ∣F, mF〉 = 
∣2,2〉 ≡ ∣2〉 and ∣2,1〉 ≡ ∣1〉 by applying a /2 radio frequency (RF) 
pulse. These two states constitute an effective two-level system, as 
all other states in the F = 2 manifold are pushed out of resonance by 
the nonlinear Zeeman shift generated using an external bias field 
(see Methods for more details). To avoid dephasing of the spin 
superposition due to noise in the bias fields, we add  pulses giving 
rise to an echo sequence (see Methods). The full-loop SGI is then 
applied by using a series of four magnetic gradient pulses (gradients 
along the axis of gravity, z; see Fig. 1), which are generated by running 
currents on the atom chip [more details on the setup can be found 
in (16)]. The first pulse, of duration T1, splits the superposition into 

two momentum components, which then freely propagate during a 
delay time Td1. The wave packets are then stopped relative to one 
another (pulse duration T2), accelerated back (pulse duration T3), 
and, after a second delay time Td2, are stopped again (pulse dura-
tion T4), ideally when overlap in space and momentum is maximal. 
As the direction of acceleration in the second and third pulses is 
opposite to that of the first and fourth pulses, we name the T2 and 
T3 pulses the reverse pulses. As the T3 and T4 pulses are required to 
undo the splitting in position and momentum created by the T1 and 
T2 pulses, T3 andT4 are named the recombination pulses. We obtain 
the population signal with the help of a second /2 pulse followed 
by a spin population measurement. We measure the visibility by 
scanning the phase  of the second /2 pulse (Fig. 1) and observe the 
contrast of the resulting population fringes.

To minimize z(2T) and p(2T) (inaccuracies in the final re-
combination), and thus maximize the visibility of the interference 
signal, we must optimize the experimental parameters. In Fig. 3, we 
present an example optimization run, in which we fix the durations 
of the first and last gradient pulses T1 and T4 and also the durations 
of the delay times Td1 and Td2 (usually T1 = T4 and Td1 = Td2 = Td to 
begin with). We measure the output population as a function of the 
duration T2 + T3 of the second and third gradient (reverse) pulses, 
while keeping the total duration T2 + T3 + Td2 constant. The data 
nicely fit a Gaussian envelope times a sine function. The peak of the 
envelope corresponds to the point in which the overlap integral is 
maximal. Ideally, for linear magnetic gradients, one would expect 
the peak overlap to occur when the sequence is symmetric, i.e., T1 + 
T4 = T2 + T3 (assuming Td1 = Td2). However the nonlinearity of the 
magnetic potential created by the chip wires in the z direction (16), 
together with the wave packets’ movement with respect to the chip, 
breaks the symmetric timing diagram. The optimal duration of the 
gradient pulses depends on the delay times, the initial distance from 
the chip, and the specific scheme used (see Methods for more 
details about the optimization procedure). Generally, one needs to 
optimize two independent parameters—one to minimize the final 
relative position z(2T) and one to minimize the final relative 
momentum p(2T).

While, as noted in the introduction, accuracy is the main chal-
lenge, we also need to address the issue of stability, whereby tempo-
ral fluctuations may give rise to dephasing, decoherence, and drifts. 
Even in the absence of decoherence, noise may cause the interfer-
ence phase to jitter from one experimental shot to the next (e.g., due 
to a fluctuating bias field), thus dephasing the averaged phase or 
preventing recombination in the case of a different noise (e.g., fluc-
tuating gradients). In this work, we achieve high stability by using 
an atom chip (28) with several advantages, including strong mag-
netic gradients so that the experimental duration is very short and, 
consequently, the interaction with external noise is brief and very low 
inductance so that the gradients can be switched in microseconds. In 
addition, the structure and position of the magnet are very precise 
as it is made of a near-perfect wire. Also, care was taken to reduce a 
wide range of hindering effects. For example, a novel method is 
used to reduce the effect of current fluctuations on the chip by 
using a three-wire configuration that produces a quadrupole and 
exposes the wave packets to a weaker magnetic field from the 
chip, while maintaining strong gradients. Using these advantages, 
we have been able to show low-phase noise (16) (SD as low as 0.1 
rad of the spatial fringe SGI), demonstrating the stability of the 
apparatus.

Fig. 2. The longitudinal full-loop SGI (z position versus time) in the laboratory 
frame (along the axis of gravity). In addition to the pull of gravity, the wave pack-
ets are being accelerated and decelerated by the magnetic gradient pulses. The 
full-loop sequence is finished after the fourth gradient, after which the spatial sep-
aration and imaging pulses are applied to measure the different spin populations 
of states ∣1〉 and ∣2〉, thus performing a measurement of the spin in the    ̃ x    direction 
(combined with a leading /2 pulse; see Fig. 1). A similar configuration may be used 
for a macroscopic-object interferometer; see the “Testing different aspects of gravity” 
section. The only difference between the atomic configuration shown here and the 
macroscopic-object configuration presented in the following is in the final measure-
ment. Measuring the spin state of a single macroscopic object does not use spatial split-
ting and is simply done by optical readout (e.g., as in done with nanodiamond spins).

D
ow

nloaded from
 https://w

w
w

.science.org at C
arnegie M

ellon U
niversity on January 04, 2023



Margalit et al., Sci. Adv. 2021; 7 : eabg2879     28 May 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 11

RESULTS
We now validate that we are able to successfully recombine in posi-
tion and momentum, as both can cause loss of visibility. First, in 
Fig. 4, we present the loss of coherence due to the first magnetic 
pulse alone (i.e., by setting T2, T3, T4 = 0), giving rise to orthogonal-
ity in momentum. The contrast drops to  1 /  √ 

_
 e    at lp/m = 0.12 mm/s 

momentum splitting. Next, we apply a much stronger momentum 
splitting of p/m = 2.6 mm/s and show in Fig. 5 (blue data) that we 
are able to undo this orthogonality by a second gradient pulse, 
which stops the relative motion of the wave packets. However, as we 
extend the delay time Td1, the wave packets start to split in space 
and we observe a decay in visibility that cannot be restored using T2 
alone, as the distance between the wave packets becomes larger than 
their coherence length lz. We validate that this loss of visibility is 
mainly due to spatial splitting, by optimizing T2 for each value of 
Td1, such that maximal visibility is achieved (see Methods for details).

Using this method, we are able to also accurately determine lz. 
To describe the expected loss of contrast with increasing spatial 
splitting, we fit the blue data with a Gaussian times a sine function 
of the form    P  1   = Aexp  (  −  1 _ 2   T  d  2   /     2  )  sin [( T  d   ) +    0   ] + c  , where (Td) 
is the accumulated phase difference, which contains terms propor-
tional to Td and   T  d  2    (14), 0 is a constant phase shift, A is the ampli-
tude, c is a constant, and , the decay constant, is essentially the 
coherence time (as Td is much larger than the pulse time). Using the 
value of , we calculate the spatial coherence length lz and obtain lz 
= 0.38 ± 0.08 m (see Methods). Note that the blue data decay to less 
than the expected 50% value, probably because of imperfect RF /2 
pulses, affecting the state preparation and population measurement.

We are now ready to recombine the two wave packets. We add 
the recombining pulses T3 and T4 to the previous sequence and gen-
erate the red data in Fig. 5, where the value of T4 is also optimized in 
a similar manner for maximal visibility. One can clearly see the 
Gaussian decay of the visibility due to spatial splitting in the first 
(blue) data and the revival of the visibility due to the successful 

recombination of the spatially split wave packets (red data). At Td1 = 
Td2 = 350 s, for example, the blue data decay to 16% of their origi-
nal amplitude, while the red data show no decay at this time scale. 
The red data are fitted with a similar function as that used for the 
blue data, but without the decaying Gaussian term (as the decay is 
not visible in this range), namely, P1 = A sin [(Td) + 0] + c.

In summary, we have clearly shown the successful recombination 
in momentum and position, thus realizing a complete SGI. We have also 
measured lp and lz, and the observed visibility is proof that the accuracy 
of our recombination in momentum and position is better than these 
coherence scales (see Methods for more discussion on the results).

Limits on accuracy
To test the limits of our accuracy, in Fig. 6, we plot the visibility as a 
function of the maximum splitting in momentum p(T1) and in 
position z(T). To try and maximize the splitting, we use several 
different configurations: We invert the sign of the relative accelera-
tion by reversing the sign of the currents in the chip wires, while, in 
other sequences, we keep the same currents while inverting the 
spins with the help of  pulses (see Methods). We also use a variety 
of magnetic gradient magnitudes by varying the current on the chip 
and scan both the splitting gradient pulse duration T1 and the delay 
time between the pulses Td. Each point in Fig. 6 was taken using 
different parameters and was optimized independently. For weak 
splitting, we observe high visibility (∼95%), while, for a momentum 
splitting equivalent to 1 ħk (optical photon recoil on the rubidium 
D2 line, ħk/m = 5.8 mm/s, where m is the atom’s mass), the visibil-
ity is still high (∼75%), indicating that the magnetic field accuracy 
allowed reversing the splitting to a high degree. The quoted values are 
normalized to that of a pure Ramsey sequence, i.e., a sequence with-
out any magnetic gradients, to cancel technical effects (see Methods). 
The visibility as a function of maximum splitting is qualitatively the 
same for space and momentum splitting and shows a decrease in 
visibility as splitting is increased.
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Fig. 4. Single kick effect on the contrast: Population as a function of the applied 
velocity difference v between the wave packets for a single pulse of dura-
tion T1 (where we set T2 = T3 = T4 = 0). As the splitting is increased, the population 
decays to 50%—corresponding to zero contrast. In this measurement, we take care 
that the spatial separation is as small as possible (z ≤ 50 nm) such that the decay 
due to spatial splitting is negligible. The velocity difference is calculated according 
to v = aT1, where a = 59.5 m/s2 is the applied relative acceleration. The data are 
fitted to a Gaussian times a sine function, and the fit returns a momentum coher-
ence width of lp/m = 0.12 ± 0.03 mm/s, where m is the atom’s mass. To the best of 
our knowledge, this is the first direct measurement of the momentum coherence 
width of a BEC [see previous results using neutrons (76) and atomic beams (77)].
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Fig. 3. Full-loop optimization procedure: Population output as a function of 
the reverse pulse duration T2 + T3, for T1 = T4 = 6 s, Td1 = 300 s, and a rela-
tive acceleration a = 635 m/s2. The population oscillates around the optimal 
point as expected by a simplified model of a Gaussian times a sine. The peak of the 
Gaussian envelope corresponds to the time at which the wave packets’ overlap 
integral at the end of the interferometer is maximized for the given parameters. 
The sine function corresponds to the added phase between the two interferome-
ter arms, per unit time of reversing pulse.
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As we know the potential created by the chip, the wave packets’ 
positions and widths can be calculated in every step of the experi-
ment. The HD equation (Eq. 2) should thus, in principle, allow for 
a quantitative calculation of the contrast using the experimental 
parameters. However, the equation makes two simplifying assump-
tions: first, that the wave packets do not expand during the propa-
gation through the interferometer, which does not hold in our case. 
Second, it assumes that there is no nonlinear phase imprinted on 
the wave packets (i.e., magnetic gradients are linear). In our case, 
phase nonlinearity originates both from the curvature of the mag-
netic gradient generated by the chip and from conversion of the 
mean-field potential energy of the BEC released from trap to kinet-
ic energy [causing a quadratically varying phase to evolve (42)]. To 
account for these effects and try to quantitatively explain the loss of 
contrast in the full-loop SGI, we have developed a generalized wave 
packet model for studying coherence of matter-wave interferometers 
(43). While we have simulated our experimental conditions with care, 
and while these simulations accurately describe our previous inter-
ferometry results [e.g., (14–16, 44, 45)], the coherence drop observed in 
the full-loop experiment is not well described by the generalized wave 
packet model (43), and neither by the HD model. Using the experi-
mental parameters to calculate the visibility, both models predict values 
that are significantly higher than those observed in the experiment. 
We therefore leave the quantitative comparison to future work.

To give limits on our accuracy in recombining the wave packets, 
we use the experimentally measured coherence scales as a figure of 
merit and examine the ratio between the achieved maximum split-
tings and the coherence scales. We are able to recombine wave packets 
with a maximum spatial splitting of z(T)/lz = 5.1 before visibility 
goes to zero and a maximum momentum splitting of p(T1)/lp = 158. 
These results indicate that we are more successful in recombining 
in momentum than in space. The reason for this difference is yet 
unclear.

DISCUSSION
We now discuss the possibility of testing different aspects of gravity 
using the full-loop SGI. Macroscopic quantum states have been of 
great interest for a long time (46). While some proposals exist with 
the goal of probing gravity with atoms (20, 21, 47, 48), here, we aim 
at using a superposition of a macroscopic object. The idea of using 
the SGI with a macroscopic object as a probe for gravity has been 
described in detail in several theoretical works (17, 18, 22, 49–51). 
These works detail a wide range of experiments from detection of 
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Fig. 6. Analysis of accuracy. (A) Spin population visibility versus maximal sepa-
ration z(T). Experimental parameters are T1 = 2 − 30 s, Td1 ≃ Td2 = 50 − 160 s. 
(B) Visibility versus maximal momentum splitting p(T1). Experimental parameters 
are T1 = 2 − 6 s, Td1 ≃ Td2 = 164 − 367 s. In both (A) and (B), the relative accelera-
tion is varied in the range a = 635 − 2641 m/s2. As expected, coherence decays as 
we increase spatial and momentum splitting. A detailed quantitative analysis 
could not explain the observed slope (see Discussion). In both panels, the visibility 
is normalized to the Ramsey visibility without splitting (i.e., no magnetic gradients), 
typically ~90%. Insets show the raw data for two of the data points, namely, the 
population fringe generated using a phase scan of the second /2 pulse and a fit to 
a sine wave used to extract the contrast (red line; see Methods). Data points in (A) 
and (B) are of different datasets.
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gravitational waves to the testing of the quantum nature of gravity. 
In the following, we discuss the feasibility of such an experiment 
using the full-loop SGI, as described above for an atom, and show 
that such an experiment using a macroscopic body is also feasible. 
As before, our interference observable is oscillations of spin popula-
tion, rather than spatial fringes (density modulations). This observ-
able, as demonstrated in the atomic SGI described above, has the 
advantages that there is no requirement for long evolution times 
to allow the spatial fringes to develop, there is no need for high- 
resolution imaging to resolve the spatial fringes, and the phase 
accumulation may be fast [e.g., T 3 (14)]. Let us note that there are 
other proposals to realize a spatial superposition of macroscopic 
objects (52, 53), but they do not rely on the SG effect, and they use 
spatial rather than spin population fringes.

The masses that one would like to consider at first are in the 106 
to 1010 atom range. Let us first emphasize that, even before any 
probing of gravity, a successful SGI will already achieve at least 
three orders of magnitude more atoms than the state of the art in 
macroscopic-object interferometry (54), thus contributing novel 
insight to the foundations of quantum mechanics. Another contri-
bution to the latter would be the ability to test continuous sponta-
neous localization models [e.g., (55, 56) and references therein].

When considering gravity, the first contribution of such a massive- 
object SGI would simply be to measure small g (the local gravitational 
acceleration). Such an experiment would first of all enable to verify 
the created superposition of the macroscopic object (49, 57, 58). It 
should be emphasized that the interferometer is expected to have a 
unique T 3 signature (14), which would ensure that a spatial super-
position was achieved.

A second contribution of such an SGI in the field of gravity 
would be in testing modifications to gravity at short ranges (also 
known as the fifth force), as one of the SGI paths may be brought 
close to a massive object, thus allowing to probe gravity at short 
distances (59, 60). This is a regime in which light-based interferom-
eters would be difficult to use because of diffraction and light scat-
tering near the surface. Once SGI technology allows for large 
masses, a third contribution will be the testing of hypotheses con-
cerning gravity self-interaction (19–21), and when large-area SGI 
with large masses is available, a fourth contribution would be to 
detect gravitational waves (17). Last, it is claimed that placing two 
such SGIs in parallel next to each other will allow probing the quan-
tum nature of gravity (18, 51, 61). An important point here is that, 
already at 109 atoms, the gravitational interaction becomes stronger 
than the spin-spin interaction at a distance of 100 m. We note that 
(61) also talks of 10−16 kg, which is less than 1010 atoms. Let us em-
phasize that although high accelerations may be obtained with multiple 
spins, in the following, we discuss only the case of a macroscopic 
object with a single spin, as the observable of such a quantum-gravity 
experiment is entanglement between two spins, and averaging over 
many spins may wash out the signal. Furthermore, a multispin SGI 
would give rise to multiple trajectories.

We focus solely on the required SG parameters, which include 
the necessary accelerations and accuracy in relation to the required 
splitting and coherence length, respectively. Other issues such as 
material science (e.g., clean surfaces against patch potentials, spin 
contaminations, or spin coherence time near the surface), or the 
very good vacuum that will be required, will not be dealt with here. 
We will also not deal with the issue of the Casimir-Polder or dia-
magnetic interactions that may arise. These issues have been dealt 

with extensively in previous works (18, 61). While we believe that all 
discussed applications noted here, including the two parallel inter-
ferometers for the quantum-gravity experiment, may be done in the 
longitudinal configuration presented in the experimental part of 
this paper, transverse [i.e., two-dimensional (2D)] interferometers 
may also be realized with the same techniques discussed here. Both 
the 1D and 2D interferometers involve similar operations and pres-
ent the same challenges, and in the following, we will not discuss the 
differences between them.

We consider, for example, a nanodiamond composed of 106 car-
bon atoms (corresponding to a sphere radius of 11 nm) with a single 
nitrogen-vacancy (NV) spin embedded in it. Coherence time of 1 ms 
has been demonstrated at room temperature (62) and 0.6 s while cool-
ing to 77 K (63). These times are for bulk. It may very well be that 
reasonable coherence times will only be achieved at a distance greater 
than, say, 20 nm from the surface, in which case the lowest feasible 
nanodiamond size has 107 atoms. A diameter of about 40 to 50 nm also 
fits well with lithographic resolutions, which enable to create such 
nanodiamonds in a controlled manner through the etching of pillars from 
bulk. These structures have already exhibited a room-temperature 
coherence time of 200 s (64). It is clear that, in any case, significant 
material engineering will be required. The total interferometer time 
of the proposed experiment will have to be shorter than these times. 
Using well-known NV techniques [see, for example, our own work 
(65, 66)], we do not see any fundamental spin-related obstacles.

The experimental procedure is the same as for the atomic full-
loop SGI demonstrated above, with the required adjustments for 
manipulating the nanodiamond. The experiment begins by trapping 
and cooling the center-of-mass motion of the nanodiamond (67, 68). 
We note that, to the best of our knowledge, ground-state cooling of 
nanodiamonds is yet to be achieved (69). We then release the nano-
diamond from the trap and prepare it in a spin superposition of 
the ±1 spin projections using a /2 microwave pulse (a two-photon 
transition). Placing the nanodiamond 1 m away from a 1 × 1 m2 
wire on an atom chip, carrying 1 A of current [with a current density 
of 108 A/cm2, achievable with carbon nanotube–embedded Cu 
wires (70)], we get a magnetic gradient of 8.7 × 104 T/m. For 106 
carbon atoms, the acceleration for a single spin (1 Bohr magneton) 
is a = B∂zB/m = 81 m/s2. We then apply a microwave  pulse to 
inverse the relative acceleration and apply the stopping and revers-
ing pulses T2 and T3. After another  pulse, we apply T4 and stop the 
relative motion (see Fig. 1 for description of pulses). For total inter-
ferometer times of T = (0.1,1,10,100) ms, we get maximum splittings 
of z = a(T/4)2 = 5 × (10−8,10−6,10−4,10−2) m. Maintaining a con-
stant acceleration for the long durations requires placing current- 
carrying wires along the wave packets’ trajectories such that they are 
always in a region of strong gradient [e.g., as previously suggested in 
(17)] or realizing the experiment in a very strong quadrupole field 
created by coils (e.g., superconducting). We note that, if the nano-
diamond is very close to the wire, then one of the spin states will 
have to be 0 so that it does not crash into the wire. The spin state is 
then read out by standard NV optical techniques. Let us briefly 
recall that the phase is predicted to be independent of the initial 
motional condition (49).

The crucial parts of the experiment are the initial cooling and 
the recombination. The overlap integral, which determines the 
interferometer visibility (the HD effect), depends on both, and it 
will only give a significant nonzero value if the coherence length 
(a function of temperature) is better than the recombination 
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imprecision (Eq. 2). One should therefore aspire to achieve ground-
state cooling.

The coherence length is given by the harmonic oscillator length 
  √ 
_

 ħ / m   , which, for the considered object, may be assumed to be 
about 0.1 nm [assuming ground-state cooling with /2 = 80 kHz, 
as in (67)]. This value can be increased by adiabatically lowering the 
trap frequencies after cooling. We do not take into account some 
works that claim that techniques exist with which the coherence 
length may be increased even further (53, 71), as these are done for 
spatial interference fringes, where the “local” coherence length is 
what matters (71). In contrast, what matters for the full-loop SGI is 
the overlap integral, for which the coherence length only depends 
on the initial momentum width, namely, on the ground state energy 
when cooling to the ground state.

The recombination accuracy represents the main technical chal-
lenge, as it must be better than the achieved coherence length. In the 
experimental results presented above for an atomic SGI, high visi-
bility is achieved for a 700-nm coherence length, which allows us to 
assume that we have obtained a recombination accuracy on the 
order of 100 nm (when the maximal splitting was an order of mag-
nitude larger). Improving this recombination accuracy by three 
orders of magnitude (while maintaining the same ratio to the max-
imal splitting) is well within reach by using better current sources 
with less current and time jitters. (We note that at present, we use 
current sources with instabilities far above shot noise.)

Let us briefly also touch upon the topic of decoherence due to 
external and internal degrees of freedom, namely, which-path in-
formation due to some scattering event between the environment 
and the nanodiamond. The information may be encoded in the en-
vironment [i.e., the scattered particle, equivalent to the interaction 
with some noise with a correlation length smaller than the spatial 
splitting (72)] or in the internal degrees of freedom. For example, as 
explained in (73), any object with excited internal degrees of freedom 

may emit radiation that would localize it. Other sources of deco-
herence may originate from any differential interaction that the 
nanodiamond suffers between the two paths.

As a simple example of lack of decoherence due to the internal 
degrees of freedom, we can consider the atom interferometer 
demonstrated in this paper. The atom has many internal degrees of 
freedom such as those of the electrons or the nucleus. Decoherence 
can occur because of the emergence of which-path information, or, 
in other words, orthogonality. However, if the inner degrees of free-
dom do not develop some orthogonality along the two paths, then 
they are irrelevant for the interferometer, as no which-path infor-
mation is encoded in them. What can be relevant is some differen-
tial interaction between those internal degrees of freedom and the 
environment that can create such orthogonality, where, by differential, 
we mean that the interaction with the environment affecting the inter-
nal degrees of freedom, in a coordinate system relative to the center 
of mass (c.o.m), is different for the two paths of the interferometer. 
In the case of atom interferometry, it seems that external perturba-
tions are negligible with respect to the atom’s bare Hamiltonian.

In contrast, with the nanodiamond, the differential interaction 
between the internal degrees of freedom and the environment may 
not be negligible. For example, a background gas collision can in-
troduce rotation or phonons in the nanodiamond, in only one of 
the paths. The collision can even be with a cosmic muon. Further-
more, an external magnetic/electric/electromagnetic field that 
creates rotation or phonons, or some spin flip of a contamination 
spin, just in one of the paths (due to a small correlation length), 
would give rise to orthogonality. A more subtle process of decoher-
ence would be the excitation of phonons, solely due to the magnetic 
force acting on the NV centers. Here, the sudden (nonadiabatic) 
force acting on the spin would create a phonon in the lattice (this 
may be estimated through a Debye-Waller factor). As the acceler-
ation in the two paths is different, the excited phonons would be 

A

B

C

Fig. 7. Timing diagram of the full-loop experimental sequences. (A and B) The current inversion scheme, where the sign of the gradient ∂B/∂z is switched during the 
sequence. The difference between (A) and (B) is the additional  pulse before the gradients, used to increase the coherence time. (C) The spin inversion scheme, in which the 
sign of the gradient ∂B/∂z is kept constant, and the relative force between the spin states is inverted by using the  pulses in between the gradients, inverting the spin states.
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different, giving rise to orthogonality. Even if the acceleration is 
symmetric but opposite in sign, the opposite k-vector of the identi-
cal phonons would create orthogonality. To maintain adiabaticity, 
one may have to resort to engineering a gradual increase of the 
magnetic gradient within the pulse duration.

Calculating the cross section/probability for these events and the 
amount of orthogonality that they create is a daunting task. Some of 
these calculations have already been done in (18, 53) and references 
therein. In any case, we do not see a clear correlation between these 
cross sections and the internal temperatures, and so a priori, there 
is no clear need for the cooling of the internal degrees of freedom or 
the environment, as long as the wavelength of the blackbody radia-
tion is larger than the splitting induced in the SGI. If, however, for 
some reason, cooling of the internal degrees of freedom is required, 
then the experiment may be done in a dilution fridge cryostat, with 
which the atom chip technology is compatible. Additional methods 
to avoid decoherence, such as dynamic decoupling, have been sug-
gested as well (74). In any case, the fact that the SGI can achieve 
large spatial splitting in a very short time, as presented above, is a 
crucial advantage when addressing the issue of decoherence.

Last, let us emphasize that the SGI also has two clear advantages 
over laser-pulse interferometers in the context of such an experi-
ment: (i) Laser-pulse matter-wave beam splitters require an appro-
priate internal transition to coherently scatter photons; this demand 
severely restricts the applicability of these splitters to macroscopic 
objects. The SGI merely requires a magnetic moment, which en-
ables to readily achieve the magnetomechanical coupling. (ii) No 
heating is generated on the macroscopic object because no light is 
scattered. The scattering of light may also severely reduce the 
amount of light interacting with the two-level system embedded in 
the object. Lack of light scattering also suppresses the decoher-
ence rate.

To conclude, we have analyzed in detail recent realizations of 
a full-loop SGI, consisting of freely propagating atoms exposed to 
magnetic gradients, as originally envisioned decades ago. We have 
unambiguously shown recombination in both momentum and po-
sition. We have shown that SG splitting may be realized in a highly 
coherent manner with macroscopic magnets without requiring 
cryogenic temperatures or magnetic shielding. Furthermore, we have 
analyzed the limits of our system’s accuracy.

We briefly compare our experiments to state-of-the-art SG in-
terferometry (29–39). While these longitudinal beam experiments 
did show spin population interference fringes, the experiments pre-
sented here are very different. As explained in (34) and (37), the 
full-loop configuration was never realized, as only splitting and 
stopping operations were applied (i.e., no active recombination); 
namely, wave packets exit the interferometer with the same separa-
tion as the maximal separation achieved within.

Last, achieving this high level of control over magnetic gradients 
may facilitate fundamental research as well as technological appli-
cations. Specifically, we show that, in principle, full-loop SG inter-
ferometry with a macroscopic body is feasible. It may be used to test 
the foundations of quantum theory, as well as to probe exotic forces 
such as the fifth force. It may be developed as a gravitational sensor, 
serve to test exotic gravitational models such as self-interaction, 
and, lastly, may probe the quantum nature of gravity.

METHODS
Detailed experimental scheme
In the following, we describe our experimental sequence. Initial 
steps are similar to the spatial fringe SGI, and experimental setup is 
the same as used in (16). We begin by preparing a BEC of about 104 

87Rb atoms in the state ∣F, mF > =∣2,2> in a magnetic trap located 
around 91 − 96 m ±1 m below the atom chip surface (different 
experiments use different initial positions). The harmonic frequen-
cies of the trap are x/2 = 38 Hz and y/2 ≈ z/2 = 127 Hz. The 
trap is created by a copper structure located behind the chip with 
the help of additional homogeneous bias magnetic fields in the x, y, 
and z directions. The BEC is then released from the trap and falls a 
few micrometers under gravity for a duration Td0 = 0.9 to 1.4 ms 
(see Fig. 7 for a timing diagram). During this time, the magnetic 
fields used to generate the trap are turned off completely. Only a 
homogeneous magnetic bias field of 36.7 G in the y direction is kept 
on to create an effective two-level system via the nonlinear Zeeman 
effect such that the energy splitting between our two levels ∣2,2 > ≡ 
∣2> and∣2,1 > ≡ ∣1> is E21 ≈ h×25 MHz, and where the undesired 
transition is off-resonance by E21 − E10 ≈ h×180 kHz. As the BEC 
expands, interaction becomes negligible, and the experiment may 
be described by single-atom physics.

Next, we apply an RF /2 pulse (10-s duration) to create an 
equal superposition of the two spin states, ∣1> and ∣2>, and a mag-
netic gradient pulse (splitting pulse) of duration T1 = 4 to 40 s, 
which creates a different magnetic potential for the different spin 
states mF, thus splitting the atomic wave packet into two wave pack-
ets with different momenta. The chip wire current is driven using 
simple 12-V batteries connected in series and is modulated using a 
home-made current shutter. The SG acceleration is in the range of 
59.5 to 2641 m/s2 (depending on chip current). The acceleration is 
measured by splitting the wave packets using a single pulse and 
measuring the relative distance as a function of the time of flight (15).
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Fig. 8. Visibility comparison: Split + stop sequence and full-loop recombina-
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sequence for each sequence (see methods for details). Red and blue lines show 
the visibility values obtained from the fit to the data in Fig. 5 of the correspond-
ing sequences. The high values of the red data demonstrate the effective recombi-
nation and validate the values shown in Fig. 5. Dashed line shows the visibility of 
the pure Ramsey sequence (i.e., without any gradients) as a reference. The limited 
visibility is due to inaccurate RF /2 pulses (detuning), caused mainly by the varying 
distance between the atoms and the antenna.
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After a delay time Td1, we apply a stopping pulse of duration T2 
that cancels the relative momentum of the two wave packets, and 
immediately after a gradient pulse for accelerating the atoms back 
toward each other (T3). After an additional delay time Td2, we apply 
a final stopping pulse (T4) so that the two wave packets overlap in 
momentum and position.

A second RF /2 pulse is applied only at the time of measure-
ment (meaning that the two wave packets have a different spin 
throughout the propagation), which completes the interferometric 
sequence. Without the magnetic gradient pulses and their effect on 
the spatial wave function, the two /2 pulses correspond to a Ramsey 
sequence. Our signal is an interference pattern formed by measuring 
the spin population (e.g., starting with   S    ~ x     = + 1  and measuring   S    ~ z     ).

The visibility, or contrast, which represents spin coherence in 
our experiment, is measured by changing the phase between the 
two interferometer arms and observing the resulting population os-
cillation between the two states. In some measurements, we scan the 
magnetic gradient pulse duration, thus adding a relative phase be-
tween the arms (14) (as in Figs. 3 and 5).

In other measurements in which the gradient pulse durations 
are fixed, we create a population interference pattern by shifting the 
phase  of the last RF /2 relative to the first RF /2 pulse. This cre-
ates population oscillations between the states (as a function of ), 
generating the oscillations shown in the insets of Fig. 6. Contrast is 
then evaluated by fitting the population fringes to a function of the 
form P() = 0.5C sin ( + 0) + const, where C is the contrast,  is the 
applied phase shift, and 0 is a constant phase term. As noted, 
the resulting contrast shown in Fig. 6 is normalized to that of a pure 
Ramsey sequence, i.e., a sequence without any magnetic gradients. 
This cancels technical effects that reduces the contrast, such as non-
zero RF detuning (causing imperfect /2 pulses), spin decoherence 
due to external magnetic noise, etc.

As noted before, we add one or two RF  pulses in between the 
two /2 pulses, giving rise to an echo sequence that suppresses the 
dephasing taking place because of magnetic noise and inhomoge-
neous magnetic fields in our chamber. This allows us to increase the 
spin coherence time from ∼400 s up to ∼4 ms.

Relative populations in each output port are measured by apply-
ing a homogeneous magnetic gradient that separates the spin states 
and counting the number of atoms in each output state using stan-
dard absorption imaging. The homogeneous gradient is created by 
running a current in the copper structure behind the chip for a few 
milliseconds.

Last, it is worth noting that while all gradient pulses come from 
the same chip wires, the magnetic pulses may be considered as an 
analogy of the original thought experiment in which there were dif-
ferent spatial regions with different permanent magnets. This is so 
as in each pulse the current and duration may be different and have 
individual jitter, and in addition, the atom position and consequently 
the gradient are different.

Full-loop configurations
Here, we describe in more detail the “current inversion” and “spin 
inversion” sequences shown in a timing diagram in Fig. 7, which are 
used to generate the data in Fig. 6. In the first sequence, after apply-
ing a /2 pulse and the splitting gradient T1 in one direction (down-
ward toward gravity), we reverse the sign of the acceleration by 
reversing the sign of the currents in the chip wires for the stopping 
and reversing gradients T2 and T3, working in the opposite direction 

(upward toward the chip; this is done using two independent cur-
rent shutters connected to the chip in opposite directions). The 
opposite gradient causes the relative movement between the wave 
packets to stop during T2 and to change sign during T3. Last, the 
wave packets are brought to a relative stop and spatial overlap by 
the second stopping pulse T4 given in the same direction as the first 
gradient. The sequence is finished by applying a  pulse (to increase 
coherence time, giving rise to an echo sequence) and a /2 pulse, for 
mixing the different spin states and enabling spin populations inter-
ference (the /2 −  − /2 sequence is symmetric in time). The four 
consecutive gradient pulses used in the current inversion sequence 
are applied either after the first /2 pulse (i.e., only a single  pulse 
is used as described above) or in between two  pulses to further 
increase the coherence time (the /2 −  −  − /2 sequence is again 
time symmetric).

In the second sequence, we keep the same current direction in 
all gradient pulses, while reversing the spins with the help of two 
 pulses. These pulses are applied, first just before the stopping 
gradient pulse T2 and second just after the reversing gradient 
pulse T3. Each  pulse causes the spin states to flip sign, thus 
changing the direction of the applied momentum kicks in the center-
of-mass frame (in laboratory frame, all gradient pulses push the 
atoms downward toward gravity). Both the current inversion 
and spin inversion sequences are used to generate the data points 
for Fig. 6.

Minimizing the visibility loss due to momentum splitting
In Fig. 5, we validate that the loss of visibility is due to spatial 
splitting, by minimizing the visibility loss due to momentum 
splitting for each value of Td1, using the following optimization 
procedure. We scan for the optimal value of T2, i.e., the value that 
obtains the maximal visibility, for several delay times (Td1 = 
100,200,300,400 s), in a similar way to what is shown in Fig. 3. 
We then determine the optimal T2 for any given value of Td1 us-
ing a polynomial interpolation. The blue data in Fig. 5 are taken 
by using the optimal values of T2 as a function of Td1. This ensures 
that the visibility loss due to momentum splitting is minimized 
for every value of Td1, meaning that we see visibility loss mostly 
due to spatial splitting.

To validate the contrast shown in Fig. 5, in Fig. 8, we compare 
the visibility values obtained from the fit to the data in Fig. 5 to 
the values extracted from the optimization procedure. The ob-
served agreement confirms that the recombination revives the visi-
bility, thus validating successful recombination in both position 
and momentum.

Calculation of lz
In the fit of the blue data of Fig. 5, Td =  represents the time at 
which the contrast drops to  1 /  √ 

_
 e    of its full value. Accordingly, we 

estimate the spatial coherence length lz from the spatial splitting at 
Td = . This is the sum of three contributions: (i) the splitting under 
constant acceleration a for a duration T1, given by   1 _ 2   aT 1  2  ; (ii) the 
splitting at constant velocity aT1 for a duration Td, given by aT1Td; 
and (iii) the splitting under constant deceleration −a, from initial 
velocity aT1 until zero relative velocity, for duration T2 = T1, given 
by   aT  1    T  1   −  1 _ 2   aT 1  2  =  1 _ 2   aT 1  2  . Summing all contributions and setting 
Td = , we obtain   l  z   =  aT  1  2   +  aT  1    . Using the experimental parameters 
a = 367 ± 61 m/s2, T1 = 5.4 s, and the fit result of  = 186.8 ± 22.5 s, 
we obtain lz = 0.38 ± 0.08 m.
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Coherence scales
Here, we compare the experimental results of the coherence scales 
to those obtained from Eq. 1. Assuming that the BEC is a minimal- 
uncertainty wave packet, at trap release time, both its coherence 
scales are set by a single number—the size of the BEC wave packet. 
We therefore begin by calculating this number and validating it experi-
mentally. After some time of flight, however, the BEC momentum 
width increases because of conversion of the mean-field potential 
energy to kinetic energy (42), which we account for using the 
theory of (43).

The in-trap Thomas-Fermi condensate half-length w0 in the 
z (gravity) direction is given by (75)   w  0   =  √ 

_
 2 / m   /    z   , where the 

Thomas-Fermi expression for the chemical potential  for an harmoni-
cally confined condensate is given by (75)      5/2  = 15  ħ   2   m   1/2  N     ̄    3  a /  2   5/2  , 
and where    ̄   =  (   x      y      z  )   1/3   is the geometric mean of the trap fre-
quencies, N is the number of atoms, and a = 5.18 nm is the 87Rb 
s-wave scattering length. For our experimental parameters of N = 
10,000 atoms, x, y/2 = 40 Hz and z/2 = 126 Hz, we obtain 
w0 = 2.88 m.

We also experimentally validate this value: As imaging the wave 
packet at short time-of-flight Td0 (see Fig. 7) does not give reliable 
results because of refraction effects around a BEC with high optical 
density, we measure the Thomas-Fermi wave packet size as a func-
tion of Td0 and use the known trap frequency z to calculate w0 
according to  w( T  d0   ) =  w  0    √ 

_
 1 +   z  2   T d0  2      (75). This method gives the 

value w0 = 3.04 ± 0.3 m in reasonable agreement with the theoret-
ically calculated value.

As the HD theory and the generalized wave-packet model (43) 
both assume a Gaussian wave packet, we express the Thomas-Fermi 
size in terms of Gaussian width by fitting it to a Gaussian profile, 
which gives z ≃ 0.41w0 = 1.2 m for the in-trap size. Also taking 
into account the experimental time of flight of Td0 = 1 ms (i.e., the 
time difference between trap release and the start of the SGI se-
quence), the wave packet size at the start of the SGI sequence is 
    z  (t = 0 ) = 1.2 m ×  √ 

_
 1 +   z  

2   T d0  2     = 1.5 m .
The measured values of lp and lz can now be compared to theory 

(Eq. 1) using the obtained BEC wave packet size. A momentum co-
herence width of lp/m = 0.12 mm/s corresponds to a wave packet 
size of z = 6.1 m. This means that the momentum coherence 
width is about 4.1 times narrower than expected for a pure conden-
sate. The discrepancy could originate from the contribution of the 
thermal fraction of the atoms, although we evaluate the BEC frac-
tion to be larger than 0.7, so we cannot fully explain this effect yet.

A coherence length of lz = 0.38 m corresponds to a momentum 
uncertainty of p/m = 1.9 mm/s, while the expected momentum un-
certainty of a pure BEC after 1-ms expansion is p/m ≈ 0.6 mm/s 
(including increased momentum width due to conversion of the 
mean-field potential energy to kinetic energy). This means that the 
coherence length is shorter than expected for a pure condensate, a 
discrepancy that is only partially explained by the thermal fraction 
of atoms.
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