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Abstract

The Stern-Gerlach (SG) effect, discovered almost a century ago, has become a paradigm of

quantum mechanics. Surprisingly there is little evidence that the original scheme with freely

propagating atoms exposed to gradients from macroscopic magnets is a fully coherent quantum

process. Specifically, no high-visibility spatial interference pattern has been observed with such

a scheme, and furthermore no full-loop SG interferometer has been realized with the scheme as

envisioned decades ago. On the contrary, numerous theoretical studies explained why it is a

near impossible endeavor. Here we demonstrate for the first time both a high-visibility spatial

SG interference pattern and a full-loop SG interferometer, based on an accurate magnetic field,

originating from an atom chip, that ensures coherent operation within strict constraints described

by previous theoretical analyses. This also allows us to observe the gradual emergence of time-

irreversibility as the splitting is increased. Finally, achieving this high level of control over magnetic

gradients may facilitate technological applications such as large-momentum-transfer beam splitting

for metrology with atom interferometry, ultra-sensitive probing of electron transport down to shot-

noise and squeezed currents, as well as nuclear magnetic resonance and compact accelerators.
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The discovery of the Stern-Gerlach (SG) effect [1, 2] was followed by ideas concerning a SG

interferometer (SGI) consisting of a freely propagating atom exposed to magnetic gradients

from macroscopic magnets [3]. However, starting with Heisenberg, Bohm and Wigner [4] a

coherent SGI was considered impractical because it was thought that the macroscopic device

could not be precise enough to ensure a reversible splitting process. Bohm, for example,

noted that the magnet would need to have “fantastic” accuracy [5]. Englert, Schwinger and

Scully analyzed the effect in more detail and coined it the Humpty-Dumpty (HD) effect [6–

8]. They too concluded that for significant coherence to be observed, exceptional precision

would be required. The HD effect illustrates how the difficulty in achieving coherence, due

to imprecise experimental quantum operations, is related to the practical irreversibility of

quantum processes, and indeed Englert has emphasized more recently the role played in the

SGI by the emergence of time-irreversibility (TI) in quantum theory [9, 10]. (In [11] we

define TI rigorously.) Later work added the effect of dissipation and suggested that low-

temperature magnetic field sources would enable an operational SGI [12]. Claims have even

been made that no coherent splitting is possible at all [13].

As shown in Fig. 1, we have measured a SGI coherence of 99% and 95% with spatial and

spin interference signals, respectively. We achieve both with highly accurate macroscopic

magnets at room temperature, whereby a freely propagating atom is exposed to magnetic

gradients. Following in the footsteps of impressive endeavors [14–24] this is, to the best of our

knowledge, the first complete realization of a SG interferometer analogous to that originally

envisioned, showing that indeed this textbook example of a quantum device is sound. In

addition, we note that in the regime of weak quantum decoherence as we have, the two

experiments presented here demonstrate the emergence of TI from two origins: instability

and imprecision of quantum operations. As shown in the following, we are able to suppress

instability to a high degree and thus our signal is a measure of imprecision, the focus of the

HD effect. To the best of our knowledge, this is a first demonstration of the HD effect.

Let us briefly note that spin-dependent forces have been realized many years ago (e.g.

[25]) and are still frequently used (e.g. [26–29]). However, these utilize laser fields. Entan-

glement between spin and motional degrees of freedom with magnetic gradients is also used,

for example, for quantum gates (e.g. [30]), or for precision measurement (e.g. [31]), but to

the best of our knowledge, no spatial interferometry has been realized.

In Fig. 2 we present our two longitudinal SGI configurations. The half-loop consists only
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FIG. 1: Interference patterns of a Stern-Gerlach interferometer (SGI). (a) Half-loop interferometer

(see Fig. 2 for definition): A single-shot interference pattern of a thermal cloud (BEC fraction of

∼0%), with a visibility of 0.65 (only slightly lower than the single-shot visibility of a BEC). This

shows that our SGI is robust to initial state uncertainties and does not rely on the inherent

coherence of a BEC (z is the distance from the chip in the direction of gravity). (b) A multi-shot

image made of a sum (average) of 40 consecutive interference images of a half-loop SGI with a

BEC (no correction or post-selection). The normalized visibility is approximately 99% (see [11]

for a polar plot of the phases). This high stability, together with the low decoherence rate (see

text), allows testing the precision of the magnet. (c) Full-loop interferometer: a high-visibility

interference pattern of spin population showing precision and time reversibility (see text). The

normalized visibility is 95%. See Figs. 3 and 4 (and [11]) for the experimental parameters of the 3

plots.

of splitting and stopping. After the initial splitting, we manipulate the wavepackets to have

the same spin so that they may spatially interfere. Despite having the same spin, their

relative velocity may be stopped as they are at different locations in which the magnetic

gradient differs. Recombination occurs as the separated wavepackets expand and overlap

after time-of-flight (TOF). The full-loop, in which the entanglement of spin with spatial

degrees of freedom persists throughout the SGI, actively recombines the two wavepackets

in both position and momentum (i.e. four regions or pulses including splitting, stopping,

accelerating back and stopping), and uses the spin state of the recombined wavepacket as

the interference signal.

Three factors determine coherence (and similarly the level of TI) in a SGI: First, the

initial state may be too spread in position or momentum. To suppress this effect we utilize

a minimal uncertainty wavepacket in the form of a Bose-Einstein condensate (BEC). In
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FIG. 2: The longitudinal SGI (z position vs. time). (a) The half-loop interferometer. Here the

signal is made of spatial interference fringes. For interference to occur the two wavepackets are made

to have the same spin with a π/2 pulse and a selection of two of the four emerging wavepackets. This

configuration does not require high precision and it is mainly sensitive to stability. Note that as

the two wavepackets have the same spin, a long stopping pulse giving rise to an harmonic potential

is required. This creates a tight focus for the wavepackets [11]. (b) The full-loop interferometer.

Here the signal is made of spin population fringes. This configuration requires high precision in

order to maintain coherence, as in contrast to (a) it uses active recombination. Here the stopping

pulse [again in contrast to (a)] may be short as the magnetic gradient is very effective in stopping

the relative motion of two different spins. Both figures are plotted in the center-of-mass frame. As

the half-loop sequence requires wavepacket expansion to achieve overlap, the half-loop sequence is

much longer and the difference between the two experiments in eventual wavepacket size at the

time of recombination and overlap is 1-2 orders of magnitude.
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addition, we use an optimized sequence that is most robust against initial state uncertainties,

as apparent even for a thermal cloud (Fig. 1a).

The second factor is instability (i.e. temporal fluctuations). Instability is due to the

environment (either the magnet itself or beyond it) ranging from classical (technical drifts)

to quantum [32]. In our experiment the quantum regime has little effect: the high visibility

in Fig. 1b shows spatial decoherence to be small. We also estimate the decoherence due to

entanglement with electrons in the electromagnets to be small [11]. Finally, as the BEC is in

free fall, phase diffusion due to atom-atom interaction is negligible. Our main perturbation

is thus classical drifts. To study this we utilize the half-loop SGI, where visibility is not

sensitive to precision as slight changes in momentum and position of the wavepackets after

the evolution do not change the visibility but rather induce minor changes to the interference

pattern periodicity [11]. We measure stability by evaluating the shot-to-shot phase difference

of the interference pattern via the visibility of a multi-shot sum (Fig. 1b). Having confirmed

that drifts and spatial decoherence are low, we may use spin-coherence in the full-loop as a

measure of the third factor, imprecision.

Imprecision of the magnet gives rise to magnetic fields not having the right magni-

tude and direction throughout the particle’s trajectory. This is the focus of the HD ef-

fect. Various properties of the wavepacket should be controlled, such as position, central

phase, momentum and wavepacket size. These are related to the phase spread over the

wavepacket during the splitting, which is (as argued by Heisenberg and others [4, 6, 33]):

−δφ = −δ(ET/h̄) = −(∂E/∂z)σzT/h̄ = FTσz/h̄, where T is the magnetic gradient dura-

tion, and σz, σpz , are the initial wavepacket widths in position and momentum. Requiring

FT � σpz to ensure wavepacket separation (F is half the differential force), this “phase

dispersion” may be large and has to be undone by the recombination process. In our case,

δφ may be as large as several hundred radians. We study this using the full-loop SGI. Here

coherence is determined by the overlap integral (in contrast to the half-loop). As noted

by the HD papers a “microscopic” level of precision is required. This is so as the overlap

integral does not change with time, even if the wavepackets expand and overlap after TOF,

and a non-negligible value for this integral requires a recombination precision on the scale

of the initial wavepacket width in position and momentum. As in a standard Ramsey pro-

cedure, we measure φ with the help of a second π/2 pulse followed by a spin population

measurement. We measure the visibility by scanning the phase of this π/2 pulse (Fig. 1c).
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This work utilizes an atom chip [34] with several advantages including strong magnetic

gradients created by a source with very low inductance so that the gradients can be switched

in micro-seconds. In addition, the structure and position of the magnet are very precise as

it is made of a near-perfect wire [11]. Furthermore, relative to our previous work where low

visibility was obtained [35], care was taken to reduce a wide range of hindering effects. For

example, a novel method was used to reduce the effect of current fluctuations by utilizing a

3-wire configuration which produces a quadrupole and exposes the wavepackets to a weaker

magnetic field while maintaining strong gradients. This reduces phase fluctuations [11].

Our experiments begin with a superposition of the two spin states |F,mF 〉 = |2, 2〉 ≡ |2〉

and |2, 1〉 ≡ |1〉 of 87Rb atoms, prepared by a π/2 RF pulse and split into two momentum

components by a magnetic gradient pulse (along the axis of gravity, z).

Our half-loop SGI uses the long TOF (∼ 10 ms) to transform the expanding wavepackets

into spatial interference fringes (see Wigner representation [11]). We present in Fig. 3 the

measured normalized multi-shot visibility as a function of the splitting gradient pulse dura-

tion. We are limited to 4µm wavepacket separation as our imaging cannot resolve without

bias a fringe pattern periodicity below 10µm. The latter maximal separation is depicted by

the red data point. The magnetic field curvature of the stopping pulse is responsible not

only for stopping the relative wavepacket velocity, but also for focusing each wavepacket to

a minimal size of less than 1µm along the z direction (Fig. 2). At this point their separation

is 4.5 to 18 times their size [11]. To examine the effect of instability we present a second data

set where noise was injected into the current driving the splitting pulse. Several theoreti-

cal models show good agreement with both data sets. These include an analytical model,

and two numerical models: a random vector model where ε is the magnitude of random

perturbations (with infinite fluctuation correlation length, shown in Fig. 3, as well as zero

correlation length [11]), and a wavepacket propagation model (dashed and solid red lines),

which we consider most detailed in reproducing the experimental conditions [11]. To sum-

marize our half-loop experiment, we find high visibility (> 90%) for momentum splitting up

to the equivalent of ∼ 2h̄k (λ = 1µm).

Next, we realize the full-loop SGI. Here, the overlap and measurement take place after

only a few hundred µs. To make sure the spin superposition is not dephased due to noise,

we also add π pulses giving rise to an echo sequence [11]. To access a larger region of

parameter space and to ensure the robustness of our results, we utilize several different
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FIG. 3: Analysis of stability (half-loop): spatial visibility (multi-shot) vs. splitting pulse duration

T1. Data shows the normalized multi-shot visibility of sequences that minimize phase fluctuations

(high visibility), and similar sequences where current fluctuations were artificially injected into

the splitting pulse (low visibility). The sequences are detailed in [11]. The raw data for the first

data point (4µs) is shown in Fig. 1b. Error bars include fitting errors for each multi-shot pattern,

standard deviation (SEM) of single-shot visibility, and uncertainty due to the finite sample size

[11], and do not account for long term drifts. Theoretical models are detailed in the text and

in [11].

full-loop configurations as detailed in [11]. For example, we reverse the sign of the relative

acceleration by reversing the sign of the currents in the chip wires, while in other sequences

we keep the same currents while reversing the spins with the help of π pulses. We also

utilize a variety of magnetic gradient magnitudes, and scan both the splitting gradient

pulse duration, T1, and the delay time between the pulses, Td. All results are qualitatively

the same. For weak splitting we observe high visibility (∼ 95%), while for a momentum

splitting equivalent to h̄k the visibility is still high (∼ 75%) indicating that the magnet

precision enabled to reverse the splitting to a high degree.
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FIG. 4: Analysis of precision (full-loop). (a) Spin population visibility vs. maximal separation

∆z (in absolute units and in units of the BEC initial width). Concerning the farthest data point:

although out of the trend of the data we believe it is a valid point [11]. (This is an example of the

complex dependence in the 12-dimensional experimental parameter space.) Theory is due to the

wavepacket propagation model (dashed lines are a guide for the eye, see text). (b) Visibility vs.

splitting momentum ∆pz (in absolute units and in units of the BEC momentum spread). More

data points are shown in [11]. For B-C we use σz,BEC ' 1.2µm [11] (half the Thomas-Fermi width),

and σv,BEC = h̄/2mσz ' 0.3 mm/s (assuming minimal uncertainty wavepacket, and where m is the

atomic mass). The raw data for the first green data point (highest visibility) is shown in Fig. 1c.

Some of the points of the green data set (lower panels) presented in (a) have been omitted from (b),

since they add no significant new behavior (e.g. some points have the same momentum splitting,

and thus represent a vertical line in the momentum graph).

To test the limits of our precision, in Fig. 4 we plot the visibility as a function of the

normalized values ∆pz/σpz and ∆z/σz, where ∆pz and ∆z are the maximal splitting in

momentum and position. These parameters are inspired by the parameters appearing in the

HD formula [4, 11], namely the final imprecisions, where one may assume that a correlation

exists between the latter and our values of maximal splitting. The visibility is normalized

to the Ramsey visibility without splitting (i.e., no magnetic gradients), typically ∼ 90%.

As shown previously, the momentum splitting (equalling 2FT ) is the figure of merit in

determining the “phase dispersion”, and in our experiment it is as high as ∆pz/σpz = 60

before coherence is lost. In contrast, the visibility is more sensitive to spatial splitting and

we achieve ∆z/σz = 4, much lower than for the half-loop.

In Fig. 4 we also present our theoretical prediction, based on our wavepacket propagation

model, which accurately simulates the experimental conditions (also used in Fig. 3). Notice
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FIG. 5: Full-loop optimization procedure: population output as a function of the reverse pulse

duration T2 + T3, for T1 = T4 = 6µs, Td1 = 300µs. The population oscillates around the optimal

point as expected by a simplified model of a Gaussian times a sine. The peak of the Gaussian

envelope corresponds to the time at which the wavepackets’ overlap integral at the end of the

interferometer is maximized. The width of the envelope is related to the momentum width of the

wavepackets, and the sine function corresponds to the added phase between the two interferometer

arms, per unit time of reversing pulse.

that when the parameters used in the real experiment were (according to theory) not optimal,

the simulation predicts a visibility below one. This may happen when our experimental

optimization is imperfect, or if our simulation is inaccurate. When, however, the parameters

used in the experiment are exactly those deemed by theory as perfect (e.g. red data set),

the visibility is still not improved. This determines the limits of our experiment and theory

(see Outlook). In contrast to the half-loop case, we could not use an analytic model for the

full-loop results (HD theory or its extension [11]) since such a model requires knowledge of

the final state of the wavepackets (i.e. their relative separation in space and momentum, and

possibly also the relative phase chirp). These parameters could not be measured directly

from the experiment. This is in contrast to the half-loop case, in which no such knowledge

is required, as the normalized visibility is not sensitive to these parameters.

In the Fig. 5, we show an example of a full-loop optimization procedure that we use

in order to maximize the interference contrast of the full-loop SGI. In the optimization
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procedure, we set the durations of the first and last gradient pulses T1 and T4 and also the

durations of the delay times Td1 and Td2 (usually T1 = T4 and Td1 = Td2 to begin with).

We then measure the output population of the full-loop SGI sequence as a function of the

duration T2 + T3 of the second and third gradient pulses, while keeping the total duration

T2 +T3 +Td2 constant. A typical result is that shown in Fig. 5, fitted to a Gaussian envelope

times a sine function. Ideally for linear magnetic gradients, we would expect the peak

overlap to occur when the sequence is symmetric i.e. T1 + T4 = T2 + T3. However due to

the non-linearity of the magnetic potential created by the chip wires in the z direction, the

optimal point is below or above the symmetric time (the specific number depends on the

scheme used - spin inversion or current inversion).

Let us note that it is difficult to conclude whether the HD theory over- or under-estimates

the loss of coherence as we have no reliable experimental method to determine the HD

parameters. (We note that the HD theory is consistent with our numerical calculations,

which are based on the estimation of the overlap integral [11].) It is clear, however, that at

least qualitatively, we observe the HD effect.

Finally, we briefly compare our experiments to the state-of-the-art [14–24]. A detailed

comparison is given in [11]. While these longitudinal beam experiments did observe spin-

population interference fringes, the experiments presented here are very different. Most

importantly, as explained in [19] and [22], an analogue of the full-loop configuration was

never realized, as only splitting and stopping operations were applied (i.e., no recombina-

tion); namely, wavepackets exit the interferometer with the same separation as the maximal

separation achieved within. This also means that these experiments could not probe impre-

cision as an origin of TI or the HD effect. Furthermore, also within the framework of the

half-loop configuration, the differences are significant. Most importantly, the beam exper-

iments could not observe any matter-wave interference fringes due to spatial splitting, as

presented here in Fig. 1. We are able to observe such fringes as we have two well defined

wavepackets, almost stationary in the lab frame.

As an outlook (details in [11]), let us note that while we have simulated our experimental

conditions with care, and while such simulations accurately describe our previous interfer-

ometry results (e.g. [35–37]), as well as the half-loop results presented in Fig. 3 and the basic

characteristics of the interferometer [11], the coherence drop observed in the full-loop exper-

iment is not well described by our theory, as shown in Fig. 4. Noting that our experimental
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precision is 0.1% (relative charge), we expect the drop to be much weaker. We can only

assume that it is perhaps due to more subtle effects such as the fine structure and alignment

of the magnets (e.g. tilts), as well as minute deviations in the initial position and state of

the BEC. Identifying the source of these known effects, which are experimentally minute to

the point of being unnoticeable to us, yet are highly dominant in perturbing the evolution,

is beyond the scope of this first demonstration. Our extensive efforts to identify the source

are described in [11]. As optimizing the visibility in the SGI requires a multi-dimensional

scan which is impractical to conduct by hand or even by electronic loops, future use of

optimization algorithms may enable further insight into the origin of the coherence loss and

the fundamental limits on reversibility and time-symmetry in such systems. Finally, for a

quantitative comparison to the HD theory, one would have to formulate this theory with

measurable observables, such as those appearing in Figs. 3, 4.

To conclude, we have demonstrated for the first time a full-loop SGI, consisting of a freely

propagating atom exposed to magnetic gradients, as originally envisioned. Furthermore,

we have presented and analyzed for the first time high-visibility spatial fringes originating

from SG splitting. We have shown that SG splitting may be realized in a highly coherent

manner with macroscopic magnets without requiring cryogenic temperatures or magnetic

shielding. Furthermore, we addressed the issues raised theoretically over several decades of

whether time reversibility may be achieved in quantum operations performed by classical

macroscopic devices giving rise to non-discrete interactions (in contrast to photon based

beam splitters for example), and have shown time reversibility to be achievable in a certain

range of parameters. In addition, we have qualitatively observed the HD effect, showing

a drop in visibility as a function of momentum or spatial splitting. Finally, achieving this

high level of control over magnetic gradients may facilitate technological applications such as

large-momentum-transfer beam splitting for metrology with atom interferometry [38], ultra-

sensitive probing of electron transport down to shot-noise and squeezed currents [39], as well

as nuclear magnetic resonance and compact accelerators [40].
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[22] E. Maréchal, R. Long, T. Miossec, J. L. Bossennec, R. Barbé, J. C. Keller, and O. Gorceix,
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91, 010407 (2003).

[27] A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede,

Proc. Natl. Acad. Sci. 109, 9770 (2012).

[28] J. Mizrahi, C. Senko, B. Neyenhuis, K. G. Johnson, W. C. Campbell, C. W. S. Conover, and

C. Monroe, Phys. Rev. Lett. 110, 203001 (2013)

[29] D. Kienzler, C. Flühmann, V. Negnevitsky, H. Y. Lo, M. Marinelli, D. Nadlinger, and J. P.

Home, Phys. Rev. Lett. 116, 140402 (2016).

[30] M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, and C. Wunderlich, Phys.

Rev. Lett. 102, 073004 (2009).
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S1. EXPERIMENTAL PROCEDURE

In the following we describe our two experiments: the half-loop and full-loop Stern-

Gerlach interferometers (Fig. 2 of main text). Both experiments start with the same se-

quence: We begin by preparing a BEC of about 104 87Rb atoms in the state |F,mF 〉 = |2, 2〉

in a magnetic trap located around 90µm below the atom chip surface (accurate numbers

are given in the following). The harmonic frequencies of the trap are ωx/2π ≈ 40Hz and

ωy/2π ≈ ωz/2π ≈ 126Hz where the BEC has a calculated edge-to-edge size of 1∼ 8µm

along x and ∼ 6µm along y and z. The trap is created by a copper structure located behind

the chip with the help of additional homogeneous bias magnetic fields in the x, y and z

directions (see Fig. S1). The BEC is then released from the trap, and falls a few µm under

gravity (duration of 0.9 ms in the half-loop case, and Td0 in the full-loop case, see details

in the following). During this time the magnetic fields used to generate the trap are turned

off completely. Only a homogeneous magnetic bias field of 36.7 G in the y direction is kept

on to create an effective two-level system via the non-linear Zeeman effect such that the

energy splitting between our two levels |2, 2〉 ≡ |2〉 and |2, 1〉 ≡ |1〉 is E21 ≈ h×25 MHz,

and where the undesired transition is off-resonance by E21 − E10 ≈ h×180 kHz. As the

BEC is expanding, interaction becomes negligible, and the experiment may be described by

single–atom physics. Next, we apply a radio-frequency (RF) π/2 pulse (10µs duration) to

create an equal superposition of the two spin states, |1〉 and |2〉, and a magnetic gradient

pulse (splitting pulse) of duration T1 = 4−40µs which creates a different magnetic potential

Vmj(z) for the different spin states mj, thus splitting the atomic spatial state into two wave

packets with different momentum.

S1.1. Half-loop interferometer

Our experimental sequence for the half-loop interferometer is sketched in Fig. 2A of the

main text. Just after the splitting pulse, another RF π/2 pulse (10µs duration) is applied

creating a wave function made of four wave packets (similar to the beam splitter described in

[35]): |p±〉 ≡ 1√
2
(|p1,x0〉 ± |p2,x0〉), where |p,x〉 represents a wave packet with momentum

p and central position x (x0 is the position of the atoms during the splitting pulse) and

the plus and minus signs correspond to the final spin states |1〉 and |2〉, respectively. In
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this experiment we choose to work with the momentum superposition of the wave packets

having spin |2〉 [while disregarding the superposition of |1〉, which after a second gradient and

time–of–flight (TOF) is at a different final position]. The time interval between the two RF

pulses (in which there are only two wave packets, each having a different spin) is reduced to

a minimum (∼ 40µs) to suppress the hindering effect of a noisy and uncontrolled magnetic

environment so that the experiment does not require magnetic shielding (see Sec. S3 for more

details). The minimal time between the two RF pulses is determined by a magnetic ’tail’

of the gradient pulse, which at shorter times affects the resonance of the two-level system.

After a magnetic gradient pulse of duration T2 designed to stop the relative motion of the

two wave packets, the atoms fall under gravity for a relatively long TOF, expand and overlap

creating a spatial interference pattern, and after 8-18 ms (in total since the trap release) we

image the atoms by absorption imaging and generate the pictures shown in Fig. 1A,B of the

main text.

Finally, let us note that due to the long TOF expansion, the spatial overlap is ensured

even when there is no spatial precision allowing an accurate recombination of small wave

packets. As spatial fringes may form even when there is clear momentum separation between

two wave packets, this experiment is also not sensitive to the momentum precision of the

stopping pulse.

S1.2. Full-loop interferometer

Our experimental sequence for the full-loop interferometer is sketched in Fig. 2B of the

main text. This configuration is the same as originally envisioned for the SG interferometer

(SGI) [3]. This configuration is sensitive to the precision with which the final wavepackets

overlap in space and momentum (i.e. the visibility is a function of the overlap integral).

In contrast to the half-loop experiment, the second RF π/2 pulse described above is

applied only at the time of measurement (so that the two wave packets have a different

spin throughout the propagation), namely it completes the interferometric sequence. This

completes a Ramsey sequence. Furthermore, our signal is not a spatial interference pattern

but rather an interference pattern formed by measuring the spin population (e.g. starting

with Sx = +1 and measuring Sx). In addition to the splitting and stopping gradient pulses

(T1 and T2), we also apply a gradient pulse for accelerating the atoms back towards each
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other (T3) and then apply a final stopping pulse (T4) so that the two wave packets overlap

in momentum and position. These four gradient pulses occur in between the two RF π/2

pulses.

In order to create a population interference pattern, the last RF π/2 pulse is shifted by

a phase φ relative to the first RF π/2 pulse. This creates population oscillations between

the states (as a function of φ), which are later measured by applying a strong magnetic

gradient to separate the spin states, and counting the number of atoms in each output state,

generating the pictures shown in Fig. 1C of the main text. The strong gradient is created

by running a current in the copper structure behind the chip for a few ms (see Fig. S1).

Note that we also add one or two RF π pulses in between the two π/2 pulses, giving rise

to an echo sequence which suppresses the dephasing taking place due to magnetic noise and

inhomogeneous magnetic fields in our chamber. This allows us to increase the spin coherence

time from ∼ 400 µs up to ∼ 4 ms (depending on the specific sequence used).

Finally, it is worth noting that while all gradient pulses come from the same chip wires,

the magnetic pulses may be considered as an analogy of the original thought experiment in

which there were different spatial regions with different permanent magnets. This is so as

in each pulse the current and duration may be different and have individual jitter, and in

addition the atom position and consequently the gradient are different.

S1.3. Experimental setup

In both experiments the setup is the same: the magnetic gradient pulses are generated

by three parallel gold wires (along x) located on the chip surface (Fig. S1), which are 10

mm long, 40µm wide and 2µm thick. The wires’ centers are separated by 100µm, and

the same current runs through them in alternating directions, creating a 2D quadrupole

field (in the yz plane) with its center at z = 98µm below the atom chip. The phase noise

is largely proportional to the magnitude of the magnetic field created during the gradient

pulse [35], whereas the fluctuations in the very stable current in the external coils giving

rise to the homogeneous bias field (along y) are relatively small during the short time scale

of each experimental cycle. As the main source of magnetic instability is in the gradient

pulse originating from the chip currents, positioning the atoms near the middle (zero) of the

quadrupole field created solely by the three chip wires 98µm below the chip surface reduces
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FIG. S1: (A,B) Pictures of the atom chip on its mount, with the copper structure visible behind it.

Note that its orientation in the experimental setup is face down. (C) Magnetic field strength below

the atom chip, generated by the quadrupole field via the chip wires (represented by the orange

squares below the chip, see Fig. S2) and an homogeneous bias field By generated by external coils.

The purple dot shows the location of the trapped BEC, which has, according to simulation, a

Thomas-Fermi half-width in the yz plane of about 3µm.

the phase noise (see Fig. S2). In the same figure we also explain how the reverse current in

the three chip wires gives rise to the opposite gradient. This gradient is used in the second

and third pulses of the current inversion scheme, in which a negative acceleration between

the two wave packets is required in order to close the loop.

The chip wire current is driven using simple 12 V batteries connected in series, and is

modulated using a home-made current shutter. To obtain timing resolution of below 1µs,

we trigger the shutter using an Agilent 33220A waveform generator, allowing a programming

resolution of a few ns. The total resistance of the three chip wires is 13.51 Ω (when the chip

temperature has stabilized after a few hours of working). Shot-to-shot charge fluctuations
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FIG. S2: Quadrupole field generation and its benefit. (A) Schematic diagram of the chip wires

which are used to generate the quadrupole field. Wires are 10 mm long, 40µm wide and 2µm

thick. The separation of the wires’ centers is 100µm, and the direction of the current I alternates

from one wire to the next. The wires, being much smaller than the size of the chip (25 mm ×
30 mm), are hardly visible in Fig. S1. (B) While the constant bias magnetic field (dashed black

line) is necessary to create an effective two-level system, we do not require any additional bias to

be produced by the chip wires during the gradient pulses, but require only the gradient of the field.

One can see that the total magnitude of the magnetic field produced by a quadrupole and a bias

(red line) is smaller than that produced by a single wire and a bias (blue line, as used in [35]),

while the gradient (at ∼100µm) is the same. Since the phase noise is largely proportional to the

magnitude of the magnetic field created during the splitting pulse [35], positioning the atoms near

the quadrupole position (98µm below the chip surface) reduces the phase noise. We also present

how the opposite gradient is produced by just using a counter-propagating current in the three

chip wires.

are measured to be δI/I = 3.59 × 10−3. The RF signals (π/2 and π pulses) are generated

by an SRS SG384 RF signal generator which also shifts the relative phase φ between the

two π/2 pulses, creating the observed population fringes. The RF signal is amplified by a

Minicircuit ZHL-3A amplifier. We modulate the RF power using a Minicircuit ZYSWA-
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FIG. S3: Initial magnetic trap position (experimental results), as a function of the current in

the copper structure (Z shaped wire) under the chip. We determined the y axis values using

the following procedure: we loaded atoms into a magnetic guide created by running DC current

through the three chip wires used to create the quadrupole. The position of this quadrupole is

determined by the chip geometry to be 98µm from the chip’s surface, and so the position measured

on the CCD of the atoms loaded into this guide was fixed as a reference point. The y axis of the

above figure was calibrated to this reference point.

2-50DR RF switch. RF radiation is transmitted through two of the copper wires located

behind the chip (with their leads showing in Fig. S1).

Finally, we show in Fig. S3 our ability to control the initial trap position by varying

the current in the copper structure (Z shaped wire) under the chip. This determines the

starting point of our experiments. We also show in Fig. S4 the measurement of the relative

momentum between wave packets following a gradient pulse.
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FIG. S4: Upper panel: typical data showing a measurement of momentum splitting after an RF π/2

pulse and a chip magnetic gradient of T1 = 10 µs duration. Each subplot shows the wave packets

after a different TOF, increasing from left to right. The increasing spatial splitting between the

wave packets can be seen. The center positions are extracted using a 1D Gaussian fit. Lower panel:

the extracted spatial splitting vs TOF, for different values of T1. The velocity difference is given

by the slope of each curve.

21



S2. DATA TAKING AND DATA ANALYSIS

S2.1. Half-loop interferometer

Here our signal is the multi-shot visibility of an interference pattern made of the summing

of many interference patterns one on top of the other with no post-selection or alignment

(each interference pattern is a result of one experimental cycle). This visibility is normalized

to the mean of the single-shot visibility. In Fig. 3 and all half-loop figures in this Supplemen-

tary Material the normalized multi-shot visibility is defined as VN ≡ Vav/〈Vs〉, where Vav is

the visibility of the multi-shot pattern obtained by adding shots from many experimental

cycles (again, without any post-selection or post-correction), and 〈Vs〉 is the mean visibility

of the single shot patterns, composing the multi-shot pattern. The error bars are estimated

by

∆VN = VN

√√√√(∆Va

Va

)2

+
1

N

(
∆Vs
〈Vs〉

)2

+
1

2N

(
1− V 2

N

VN

)2

, (S1)

where ∆Va is the fit error of the visibility of the multi-shot image, ∆Vs is the measured

standard derivation of the single-shot visibility (N being the sample size), and the third

term under the square root estimates the expected relative standard error of the normalized

multi-shot visibility due to the finite sample size [Eq. (S60)].

In Table S1 we present the parameters used for each data point in Fig. 3 of the main

text. The free propagation time Td and the second pulse duration T2 were chosen from a

large experimental parameter space so as to optimize the normalized multi-shot visibility by

minimizing the effect of fluctuations in parameters of the interferometric sequence such as

the initial trapping position or the stopping pulse duration, as detailed in section S3. While

each data point in Fig. 3 is a result of continuous data taking in long sessions ranging in

duration from an hour to several hours with no post-selection or post-correction, long term

drifts of magnetic fields or voltages in the system (e.g. due to warming up of the copper

structure under the chip, the coils or the electronics) were addressed by stopping the data

taking and re-optimizing the interferometer. These drifts are not taken into account in the

error bars presented in Fig. 3. Nevertheless, significant low-visibility data were taken during

optimization sequences. The full data, taken over many months, are shown in Fig. S5.

The visibility and phase information of each absorption image is extracted by fitting a

1D cut of the image (along the z direction) to a sine function with a Gaussian envelope, of
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FIG. S5: Complete data set from many months of running showing also lower visibility runs which

are a result of the optimization process, or the interferometer drifting away from its optimal point.

The data was ordered according to diminishing visibility, and the x axis thus does not represent

any time ordering. The mean number of single shots per point is 50.

the form:

n(z) = A exp

[
−(z − z0)2

2σ2

] [
1 + V sin

(
2π

λ
(z − zref) + φ

)]
+ c, (S2)

where A is a the amplitude, z0 is the center-of-mass position of the density envelope at the

time of imaging, zref is a phase reference point (usually taken to be middle of the image), σ

is the final Gaussian width, λ is the fringe periodicity, V is the interference fringes visibility,

and φ is the global phase difference.

To study the topic of fluctuations and stability via the multi-shot visibility (Fig. 1B), we

examine the randomizing effect in the SGI by varying the magnitude of fluctuations in the

magnetic gradient and the coupling time to the atom. The multi-shot signal is sensitive to

variations between the experimental cycles in phase, momentum and the spatial separation

d. The low-visibility data shown in Fig. 3 were taken by changing the chip voltage driving the

splitting pulse using a voltage stabilizer circuit, with corresponding variable values of chip

current (the stopping pulse current was kept constant). A different number of images were

taken for each value of the current. We then produce a multi-shot fringe pattern resulting

from a summation over many measurements with varying splitting pulse currents. In order
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T1 [µs] 4 6 8 10 12 14 16 10
Td [µs] 116 174 132 90 130 106 114 600
T2 [µs] 200 150 180 220 200 200 200 70
TOF 6760 6750 8760 12760 12738 13810 13800 21450

No. images 40 45 42 64 41 43 47 45
Scaling factor ξ 1.18 1.37 1.22 1.11 1.22 1.15 1.18 3.36

exp. d(µm) 0.55 0.98 1.14 1.31 1.66 1.92 2.25 3.93
calc. d(µm) 0.54 0.94 1.13 1.28 1.68 1.85 2.16 3.90
σmin(µm) 0.120 0.140 0.125 0.113 0.124 0.1174 0.12 0.34

TABLE S1: Parameters of the half-loop data points in Fig. 3 of the main text: time durations

(in µs) of stages of the interferometer sequence and wave packet widths and separation d achieved

during the sequence, measured or calculated analytically from Eqs. (S17) and (S18) with the

estimated value ω = 2π × 850 Hz for the stopping pulse curvature. The experimental value of d is

calculated from the observed periodicity of the interference pattern λ, and the equation λ = ht/md.

The scaling factor ξ describes the squeezing in phase space (see Sec. S6, Eq. S17), and σmin describes

the minimal wave packet width at the focal point (see Eq. S19). The last column describes the

parameters of the large wave packet separation sequence (red data point in Fig. 3 of the main text).

to properly emulate the spectrum of natural noise, the averaged image was obtained by

taking a weighted average such as to create a normal distribution of phases. Since the phase

is linear with the applied current (see Fig. S6), such a distribution corresponds to a normal

distribution of currents, where its width was set to δI/I = 15.47 mA / 860 mA= 1.8%.

Varying the current giving rise to the first gradient pulse affects both the phase and

the periodicity of the fringes (see Eq. S18), causing two kinds of chirping effects on the

output multi-shot image. The first is a chirp of the interference periodicity, i.e. the image is

composed of multiple periodicities (in contrast to a single-shot image or to a high visibility

multi-shot image which has only a single periodicity). The second kind is a spatial chirp of

the interference visibility, i.e. the visibility is position-dependent. Because of these effects,

we cannot extract the visibility of these multi-shot images simply by fitting the pattern to

Eq. S2, and we need to adopt a more general definition of the visibility.

Assuming our interference pattern is composed of an envelope (e.g. a Gaussian) multiplied

by some oscillating function, one such possible definition is to take the Fourier transform of

the interference pattern. In k-space, the result is a sum of three terms: one centered around

k = 0 - representing the envelope, and the two others at k = ±k0 = ±2π/λ - representing

the oscillating terms. The visibility can then be defined as the ratio of amplitudes of the

oscillatory components to the amplitude of the zero component, explicitly: V = [A(+k0) +

A(−k0)]/A(0), where A(k) represent the amplitudes of the Fourier transform at point k. The
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Point # Td0 [µs] T1 [µs] Td1 [µs] T2 + T3 [µs] Td2 [µs] T4 [µs] TOF [µs] TR [µs] z0 [µm] Ic [A] Contrast
1 920 2 50 4 50 2 502 640 91.07 0.89 0.86 ± 0.08
2 920 6 50 11.77 50.23 6 486 640 91.07 0.89 0.55 ± 0.05
3 920 10 50 20.157 49.843 10 470 640 91.07 0.89 0.41 ± 0.05
4 920 20 50 42 48 20 430 640 91.07 0.89 0.19 ± 0.02
5 920 30 50 65 45 30 390 640 91.07 0.89 0.06 ± 0.02
6 920 40 50 85.85 44.15 40 550 840 91.07 0.89 0.01 ± 0.01
1 920 6 4 11.6 4.4 6 578 640 96.06 0.89 0.58 ± 0.05
2 920 6 20 11.35 20.65 6 546 640 96.06 0.89 0.57 ± 0.05
3 920 6 100 12.1 99.9 6 386 640 96.06 0.89 0.46 ± 0.05
4 920 6 150 12.25 149.75 6 486 840 96.06 0.89 0.42 ± 0.05
5 920 6 200 12.4 199.6 6 586 1040 96.06 0.89 0.34 ± 0.09
6 1440 6 250 12.3 249.7 6 986 2060 96.06 0.89 0.33 ± 0.05
7 1440 6 300 12.45 299.55 6 886 2060 96.06 0.89 0.28 ± 0.08
8 1440 6 350 12.5 349.5 6 786 2060 96.06 0.89 0.19 ± 0.03
9 1440 6 400 12.5 399.5 6 686 2060 96.06 0.89 0.14 ± 0.04
10 1440 6 450 12.5 449.5 6 586 2060 96.06 0.89 0.13 ± 0.02
1 960 2 168 3.85 164.15 2 50 460 96.06 0.89 0.95 ± 0.09
2 958 4 164 7.5 164.5 4 48 460 96.06 0.89 0.85 ± 0.06
3 956 6 162 11.1 160.9 6 48 460 96.06 0.89 0.69 ± 0.08
4 956 10 154 18 156 10 46 460 96.06 0.89 0.35 ± 0.05
5 954 12 152 22 154 12 44 460 96.06 0.89 0.15 ± 0.04
6 957 6 161 11.1 161.9 6 47 460 96.06 1.81 0.47 ± 0.17
7 958 4 164 7.4 164.6 4 48 460 96.06 2.73 0.6 ± 0.14
8 959 2 167 3.8 167.2 2 49 460 96.06 3.73 0.72 ± 0.12
9 1009 2 317 3.7 317.3 2 99 860 96.06 3.73 0.32 ± 0.14
10 959 2 367 3.35 367.65 2 49 860 96.06 3.73 0.08 ± 0.1
11 1059 2 467 3.35 467.65 2 149 1260 96.06 3.73 0.06 ± 0.1
12 959 2 567 3.35 567.65 2 49 1260 96.06 3.73 0.06 ± 0.05
13 959 2 567 3.1 567.9 2 49 1260 96.06 5.66 0.05 ± 0.04

TABLE S2: Parameters of the full-loop data points in Fig. 4 of the main text and in Fig. S19,

including timings of the interferometer sequence. Colored point numbers correspond to the col-

ored numbers in Fig. S19 (one color per data set). Some of the points presented here have been

omitted from the figures in the main text, since they are either sub-optimal relative to other points

(optimization was not good enough), or add no significant new behavior (e.g. all points of the red

data set have the same momentum splitting, and thus represent a vertical line in the momentum

graph). Parameters are: Td0 - time between trap release to first gradient; T1, Td1, T2, T3, Td2, and

T4 are the gradient pulse durations and delay times between the gradients, as shown in Fig. 2b of

the main text; TOF - delay between T4 and the last π/2 pulse; TR - total Ramsey interrogation

time (i.e. the time between the first and last π/2 pulses); z0 - initial trap distance from chip (before

release); and Ic - current in chip wires during gradients. The contrast values are the experimental

measured values, including propagated fit error. The value of z0 was calculated using the results

of Fig. S3; uncertainties of a few µm exit due to position shifts of the copper structure (Z wire)

generating the magnetic trap, relative to the chip from which the quadrupole field is generated.

Blue and green data sets are measured using current inversion sequence; green data set is measured

using spin inversion sequence (see text for details).

visibility of the output multi-shot images is calculated according to this procedure, using a

numerical FFT of each image.

In table S1 we show some wave packet parameters calculated from the experimental pa-

rameters or results by using Eqs. (S17) and (S18). The wave packet separation at the end of

the stopping pulse is calculated from the experimental data by using the measured spatial
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FIG. S6: Half-loop interference phase as a function of the applied chip current during the first

gradient pulse T1 (using a voltage stabilizer circuit, see text), used to produce the low visibility

data in Fig. 3 of the main text. The phase data has been shifted vertically so that all data starts

at the same initial phase for clarity. The phase is clearly linear with the applied chip current, and

we also confirm that the slope divided by T1 of all curves is equal within error bars, as would be

expected from theory. The mean slope divided by T1 is ∂φ/∂I1/T1 = 6.49 rad/A/µs.

period of the fringes λ = ht/md, where t is the TOF. The wave packet separation calculated

from Eq. (S18) differs from the values calculated from the fringe periodicity by no more than

4%. The separation d is larger than the minimal Gaussian wave packet width σmin by a

factor 4.5 − 18. We note that the spatial separation being much larger than the minimum

wave packet width is an experimental fact that is evident from the appearance of multiple

fringes in the final interference pattern (d/σmin roughly represents the number of interference

fringes of a single pattern). However, this wave packet separation is inversely proportional

to the spatial period of the fringes, λ, and as our TOF is experimentally limited by the size

of the vacuum chamber and the field of view of the camera and its sensitivity, it follows that

the wave packet separation is limited by the practical resolution of the imaging system and

cannot exceed the maximal value of about 4µm, which was observed in our experiment.

As noted, we normalize the multi-shot visibility to the mean of the single-shot visibility

taken from the same sample. This normalized multi-shot visibility eliminates irrelevant

26



effects such as visibility reduction due to an impure BEC (thermal atoms), lack of perfect

overlap between the wave packet envelopes in 3D, as well as imaging limitations such as

inaccurate focal point, limited focal depth, spatial resolution, camera speed relative to the

speed of the moving fringes, and so on.

Finally, let us also note that as the durations of our interferometer operation and work-

cycle are 100µs (without TOF) and 60 s respectively, and as we take data for several hours in

each run, we believe we are sensitive to fluctuations with frequencies lower than about 10 kHz.

As the shortest magnetic gradient pulse is 4µs, we may even be sensitive to frequencies up

to 100 kHz. This captures the dominant part of the 1/f (flicker) noise of electronic systems.

S2.2. Full-loop interferometer

Here, our signal is the single-shot visibility of spin population oscillations. This visibility

is normalized to the Ramsey oscillations’ visibility when no magnetic gradients are applied.

In Table S2 we present the parameters used for each data point in Fig. 4 of the main text.

The atoms were initially trapped as in the half-loop at 90± 2µm, and in later experiments

were moved by 5µm so that they are closer to the center of the quadrupole (which is at

98µm). The drop time (free-fall) before the start of the sequence was Td0 = 0.9 − 1.4ms

(4− 10µm), see table S2.

After achieving a population interference pattern (see Sec. S1), the pattern’s contrast is

measured by fitting to a sine function of the form P (φ) = 0.5C sin(φ + φ0) + const, where

C is the contrast, φ is the applied phase shift, and φ0 is a constant phase term. As noted,

the resulting contrast is normalized to that of a pure Ramsey sequence, i.e., without any

magnetic gradients (see Fig. S7 for typical data).

The basic experimental procedure used in the full-loop scheme is described in Sec. S1, and

its parameters are given in table S2. Here we describe in more detail the ’current inversion’

and ’spin inversion’ sequences, used in Fig. 4 of the main text, beginning with the former

sequence. These different sequences are used in order to access a larger region of parameter

space and to ensure the robustness of our results (timing diagram is shown in Fig. S8). In

the first sequence, after applying a π/2 pulse and the splitting gradient T1 in one direction

(downwards towards gravity), we reverse the sign of the acceleration by reversing the sign

of the currents in the chip wires for the stopping and reversing gradients T2 and T3, working
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FIG. S7: Fractional population in the mF = 1 state as a function of the applied phase shift φ

between the Ramsey π/2 pulses, for different kick times. These data belong to the blue data set

as it appears in table S2 and Fig. 4 of the main text. Also shown is the ‘pure’ Ramsey sequence

(no gradients), used for the normalization of the contrast values. A fit to a sine function is shown

for each curve (see Sec. S1).

in the opposite direction (upwards towards the chip, this is done using two independent

current shutters connected to the chip in opposite directions). The opposite gradient causes

the relative movement between the wave packets to stop during T2, and to change sign during

T3. Finally the wave packets are brought to a relative stop and spatial overlap by the second

stopping pulse T4 given in the same direction as the first gradient. The sequence is finished

by applying a π pulse (to increase coherence time, giving rise to an echo sequence) and a

π/2 pulse, for mixing the different spin states and enabling spin populations interference

(the π/2 − π − π/2 sequence is symmetric in time). The four consecutive gradient pulses

used in the current inversion sequence are applied either after the first π/2 pulse (i.e. only a

single π pulse is used as described above; used in all points in the blue data set and points

#1-5 in the red data set, see table S2), or in between two π pulses to further increase the

coherence time (the π/2 − π − π − π/2 sequence is again time symmetric; used in points

#6-10 in the red data set).
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FIG. S8: Timing diagram of the full-loop experimental sequences. Symbols are explained in

table S2. (A),(B) The current inversion scheme, where the sign of the gradient ∂B/∂z is switched

during the sequence. The difference between (A) and (B) is the additional π pulse before the

gradients, used to increase the coherence time. (C) The spin inversion scheme, in which the sign

of the gradient ∂B/∂z is kept constant, and the relative force between the spin states is inverted

by using the π pulses in between the gradients, inverting the spin states.

In the second sequence, we keep the same current direction in all gradient pulses, while

reversing the spins with the help of two π pulses. These pulses are applied, first just before

the stopping gradient pulse T2 and second just after the reversing gradient pulse T3. Each π

pulse causes the spin states to flip sign, thus changing the direction of the applied momentum

kicks in the center-of-mass frame (in lab frame, all gradient pulses push the atoms downwards

towards gravity). The spin inversion sequence is used in all points of the green data set.

S2.3. Calculation of the BEC wave packet size

We calculate w0, the in-trap Thomas-Fermi condensate half-length, in the z (gravity)

direction according to [51]:

w0 =

√
2µ

m

1

ωz
, (S3)
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where the Thomas-Fermi expression for the chemical potential of a harmonically confined

condensate is given by [51]

µ5/2 =
15h̄2m1/2

25/2
N0ω̄

3a, (S4)

ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trap frequencies, and a = 98a0 = 5.18 nm is

the 87Rb scattering length. Using the values: ωz = 127 Hz (measured, see Fig. S9; we also

assume that ωy = ωz); ωx = 38 Hz (evaluated from magnetic trap simulation), N0 =10,000

atoms, we obtain w0 = 2.88 µm. We then multiply this number by 0.41 to turn it into

Gaussian width (see Sec. S7.2) and obtain σTFz ' 0.41w = 1.2µm, which is the number used

in Fig. 4 of the main text. If we assume we have a factor of 2 error in both the number of

atoms and in ωx (as these parameters have the biggest uncertainties), the resulting error in

σTFz is ∼ 30%.

In order to compare this result to the experiment, we would like to measure the Thomas-

Fermi wave packet size directly by imaging. However a 3µm wave packet size is on the

edge of our imaging resolution, meaning we cannot expect to see such a small wave packet

without bias. Moreover, at short TOF when the cloud is dense and close to the chip, we

have some effect which causes negative values of optical density to be measured near the

upper and lower edges of the cloud, thus distorting the image. This is possibly due to the

cloud diffracting the imaging light, adding more light on the cloud edges (instead of showing

positive or zero absorption).

These two effects mean that imaging the wave packet at short TOF is not reliable, and

we need to use a different technique: we perform a measurement of the Thomas-Fermi wave

packet size as a function of TOF (Fig. S10). The equation of the BEC Thomas-Fermi w size

as a function TOF is given by [51]:

w(t) = w0

√
1 + ω2t2, (S5)

where w0 is given by Eq. S3. Although we cannot deduce w0 by extrapolating TOF to 0, we

can use the slope to determine w0, assuming we know the trap frequency ω. An independent

measurement of the trap frequency in z direction is shown in Fig. S9.

Experimental results for the Thomas-Fermi wave packet size as a function of TOF are

shown in Fig. S10. Values are obtained by fitting the imaged atomic density to a bi-modal
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(Gaussian + Thomas-Fermi) density profile. We fit the resulting wave packet size vs. TOF to

an equation of the form
√
a+ bt2, which corresponds to Eq. S5 with an extra free parameter

for the wave packet size at zero TOF. Using parameter b obtained from the fit, we calculate

the initial wave packet size to be w0 =
√
b/ω = 3.35 and 2.74µm, for the upper and lower

panels of Fig. S10, respectively (each panel represents a different data set). These numbers

are close to theoretically calculated value of w0 = 2.88 µm.

On the other hand, calculating w0 from parameter a gives w0 =
√
a = 15.76 and 11.64µm,

for the upper and lower panels, respectively, far from the theoretical value. At a TOF of 4 ms,

theory gives w(t = 4 ms) = 10µm, while the experimental result gives 15.4 ± 0.9µm, and

15.74±0.7µm for the upper and lower panels of Fig. S10, respectively. The limited imaging

resolution alone cannot explain this deviation from theory. Another possible explanation

is that we have additional limitations to our imaging system (e.g. cloud is out of focus).

Alternatively, it is possible that the experimental results are correct, and the theory misses

some other effect. Although the latter case means we spatially split the BEC to less of its

spatial extent, it also means we split it in momentum more than the maximal number of

∼60 reported in Fig. 4b of the main text (assuming the BEC is a minimal-uncertainty wave

packet).

S3. INSTABILITY SOURCES AND OPTIMIZATION

S3.1. Half-loop interferometer

In the half-loop configuration, a major source of phase noise is the shot-to-shot current

fluctuations in the chip wires, which cause fluctuations of the magnetic field energy during

the time between the two π/2 pulses, in which the two wave packets occupy two different

spin states [35]. Using a quadrupole field to create the magnetic gradient reduces this noise

(see Fig. S2).

To suppress the 50 Hz electrical grid noise which is coupled to the atoms through the bias

coils’ current supplies, we synchronize the experimental cycle start time to the phase of the

electrical grid sine wave (this is done by using a phase-lock loop, which sends a trigger to

the experimental control). In our experiment this significantly reduced this type of noise.

Additional technical sources of noise include timing jitter of the magnetic gradient pulses

31



0 5 10 15 20 25 30 35 40
0.1

0.11

0.12

0.13

0.14

0.15

0.16

Time in trap after kick [ms]

F
in

al
 z

 P
os

iti
on

 [m
m

]+
/−

 s
em

Fit function: z(t) = a*sin(2πft)+c
       f =126.9±2.1 Hz

FIG. S9: Measurement of the trap frequency in the z direction. The x axis is the time the atoms

oscillate in the trap, after applying a kick in the z direction, using a gradient from the chip. The

y axis shows the final position, measured after trap release and additional TOF. The fit gives a

result of f = 126.9± 2.1 Hz.

(originating from the experimental control hardware), phase measurement uncertainty (due

to the fitting procedure) of about 0.1 rad, and chip-to-camera relative position fluctuations

(along the direction of the fringes). For the latter, assuming a shot-to-shot instability of 1µm

and a 31.4µm interference pattern periodicity, these vibrations would create a 2π/31.4 =

0.2 rad phase instability.

Although the fluctuations coming from the homogeneous bias field are considered to be

small, we minimize the time in which the wave packets have a different spin to 40µs. In

Fig. S11 we show that the visibility is not sensitive to this time interval as long as it is below

150µs. The high normalized multi-shot visibility corresponds to phase fluctuations of less

than 0.5 radian for this time period, showing that the fluctuations of the homogeneous bias

field are smaller than δB/B ∼ 2 ·10−5. However, one should not exclude the possibility that

long-time drifts of the value of the bias field do exist and may give rise to changes in the
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FIG. S10: BEC Thomas-Fermi size as a function of TOF, each panel is a different data set.

Red line is a fit with two free parameters (a and b). Calculating w0 by extrapolating the TOF

to 0 (i.e. taking w0 =
√
a) gives a result far from the theoretical value - much more then the

evaluated error of 30%. However, using the slope (w0 =
√
b/ω, using the trap frequency ω which

is independently measured), we obtain values close to the theoretical one of w0 = 2.88 µm. Black

line is the theoretical prediction, no free parameters.

optimal system parameters.

To further reduce the phase noise, we optimize the experimental sequence parameters, in-

cluding the initial distance of the magnetic trap from the chip. The initial trapping distance

determines the position of the atoms relative to the magnetic quadrupole created by the chip

wires during the gradient pulses. At a given distance |z− zquad| from the quadrupole center

the differential phase fluctuations δφ are proportional to the relative current fluctuations,

such that (∆mF = 1) δφ(z) = −gFµBδB(z)T1/h̄ ∝ k(T1)|z − zquad|(δI/I), where h̄k(T1) is

the differential momentum kick of the beam-splitter, which is linear with the splitting pulse

time T1, and µB is given in units of Joule per magnetic field (in Gauss or Tesla). The latter

proportionality to δI/I is a result of the fact that k(T1) is proportional to the magnetic

gradient, and the latter times the distance from the quadrupole center equals the magnitude
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FIG. S11: Normalized multi-shot visibility as a function of time interval between the two π/2

RF pulses (bottom x axis). This is the duration in which there exists a spatial superposition of

two different spin states. For times shorter than 150µs, the normalized multi-shot visibility is

not sensitive to the interval time. We also show in the top x axis the corresponding calculated

separation of the two wave packets. Note that the two x axes do not have exactly the same zero

point as the spatial separation starts only with the start of the magnetic gradient pulse and this

starts with some delay after the first RF pulse has been completed. For comparison, the Ramsey

coherence time (i.e. no spatial separation) is 400µs.

of the magnetic field. These fluctuations never vanish completely, as the wave packets have a

finite size (about 6µm Thomas-Fermi edge-to-edge) and their center position also fluctuates

from shot to shot (initial trapping position fluctuations are estimated in our system to be

±1.5µm). Figure S12 shows the dependence of the normalized multi-shot visibility on the

initial wave packet position when the other parameters are kept constant. Ideally the visi-

bility would be maximal when the atoms are closest to the quadrupole center at = 98µm,

namely, when we release the atoms from the trap at ztrap = 94µm (taking into account a

4µm falling distance before we apply the splitting pulse). However, the initial position of

the atoms also affects the magnitude of the magnetic field gradient (related to the amount

of momentum h̄k imprinted on the cloud) and the field’s curvature. This influences the sta-

bility of later stages of the interferometric process, such as relative stopping of the two wave

packets by the second gradient pulse, so that the maximal visibility may not occur exactly

at the optimal position during the splitting pulse and the highest value of the visibility is

not reached. In the half-loop experiment we did not perform a full combined optimization

of the initial trapping position and the delay and stopping pulse durations, but rather used
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FIG. S12: Normalized visibility as a function of the initial trap distance from the atom chip. The

other experimental parameters are (T1, Td, T2) = (6, 104, 130)µs and (12, 158, 180)µs. Minimal

visibility reduction due to magnetic fluctuations during splitting is expected when the splitting

position (4 µm farther than the trapping distance due to free fall between trap release and gradient

time) is closest to the quadrupole center (at z = 98 µm). In practice the visibility may also be

governed by imperfections in the later stages of the sequence if the parameters are not optimized

for each measurement point. The low visibility data in this plot shows the consequence of lack of

synchronization with the 50 Hz electricity grid.

a constant trapping position of about ztrap = 87.5µm (Fig. S12) and optimized the duration

of the delay and stopping pulses, as described below.

In Fig. S13 we demonstrate the basis for our main half-loop optimization procedure, which

aims to minimize the hindering effects of fluctuations in the later stages of the interferometric

sequence: stopping the relative wave packet motion after the free propagation time Td.

For a constant initial trapping position (which is relatively close to the quadrupole center)

we change the second gradient pulse time T2 for several propagation times Td. For each

value of the propagation time Td, maximal normalized multi-shot visibility is observed at a

corresponding stopping time T2 for which we believe that a full stopping of the relative wave

packet motion is achieved. We note, however, that other factors, such as long-term drifts

in the homogeneous magnetic field from the bias coils or voltage supplied to the chip wires,

may also affect the stability of the phase, so in order to obtain the data points in Fig. 3 of

the main text we have used the maximal value of the normalized multi-shot visibility taken

over many experimental sessions (see Fig. S5), such that these values represent the minimum

effect of noise sources other than the main source: shot-to-shot current fluctuations during
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FIG. S13: Normalized visibility as a function of the stopping gradient pulse duration T2 for a given

splitting pulse duration (T1 = 6µs) and a few values of free propagation time between gradient

pulses Td. We expect maximal visibility when the stopping pulse is designed to most accurately

stop the relative wave packet motion [T2 = acot(ωTd)/ω, see Eq. S15]. Corresponding nominal

optimal values for Td = 124, 174 and 224µs are T2 = 185, 154 and 130µs, respectively, for the

estimated curvature ω = 2π × 850 Hz.

the splitting gradient pulse.

We note that if the stopping parameters are optimized, we expect the initial position

fluctuations of the atoms to play a very minor role in the final visibility. As shown in

Sec. S6, if the stopping pulse is designed to almost completely stop the relative motion of

the centers of the two wave packets, then the final shape of the fringe patterns, including

their final position, is the same as the shape of the fringe patterns formed just after the

splitting pulse, up to a scaling factor. As the phase of the fringes after the splitting pulse,

namely the position of their peaks, are determined only by the magnetic field gradient and

not by the envelope of the initial wave packet, shifts in the initial position of the wave packets

before the splitting kick will not cause any phase shifts. It follows that the positions (phase)

of the observed fringes are expected to be independent of the initial wave packet position,

even if the envelopes of the fringe patterns move, as was reported in previous work [35].
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S3.2. Full-loop interferometer

Table S3 lists possible sources of the contrast drop observed in the full-loop scheme (Fig. 4

in the main text), which is currently unexplained by our theory (see outlook in main text).

The table also lists why we ruled out each source, and the expected contrast loss due to

each source. Here we explain some of these sources in more detail.

The first source on the list is the initial trap position offset in the y direction, relative to

the center of the chip. The SGI is sensitive to this source due to the geometry of our system:

since the chip wires’ dimension in the y direction is 40µm, an offset of a few µm would mean

that during a magnetic gradient kick, the different spins would acquire different momentum

not only in the z direction but also in y. This would result in loosing any interference signal,

either due to momentum orthogonality between the wave packets, or zero overlap in the y

direction after some evolution time. On the other hand, we are insensitive to the initial

position along x since the wires run along that direction. Figure S14 shows the initial y

position optimization for both the half-loop and full-loop schemes. The initial y position is

adjusted by changing the z bias magnetic field value before trap release.

Another possible source for contrast loss are constant magnetic gradients that exist in the

chamber, either from our bias coils or from stray fields. During a Ramsey sequences the wave

packets are found in a superposition of different spin states. A constant magnetic gradient

exerts a differential force on the different spin states, thus causing orthogonality between the

different spin wave packets and loss of contrast in the Ramsey sequence. In previous work

[36] we have found that our y bias coils produce a gradient in the z direction. The magnitude

of the gradient is evaluated to be ∼ 71 G/m, which should induce a Ramsey decoherence rate

similar to our measured value of about 400 µs (within an order of magnitude). However,

adding one or two RF π pulses (as is done in the full-loop sequence) reduces this effect,

enabling to observe much longer coherence times (up to 4 ms have been observed in our

system). This proves that constant gradients should not play a significant role in contrast

loss of the full-loop scheme.

Moreover, we can make another claim: if constant gradients are the main source for loss

of coherence, we should not observe significant coherence loss when TR - the total Ramsey

time (i.e. the time between the two π/2 pulses) remains constant, and some other parameter

is scanned. However, we see that the contrast decreases rapidly even when TR is constant
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FIG. S14: Initial y position optimization using different observables, as a function of the Z bias

value. The Z bias causes a y position shift of about 30µm/A. (A) Single shot visibility in the

half-loop sequence of a BEC and a thermal cloud, for different T1 values. (B) Full-loop contrast for

T1 = 2 µs. (C) Full-loop population oscillations for T1 = 20 µs. Qualitatively, this result is similar

to the result in Fig. 5 of the main text. All three graphs show a similar result - the optimal point

is around -2.65 A, for which the atoms are located directly below the chip center, and thus obtain

momentum only in the z direction (see text).

- see, for example, points 1-5 in the blue data set and 1-3 in the red data set (table S2).

Although all points have the same total Ramsey interrogation time TR = 640 µs, we see

large variation in contrast (0.01-0.86). We can make the same claim using points 1-8 of data

set 3.
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Imperfection causing SGI loss of co-
herence (in brackets: estimated mag-
nitude of imperfection)

Reason of being insignificant Expected coherence
loss

Initial offset in y direction (∼ 1.5µm) Optimized (see Fig. S14 and text for more details); Spin
inversion scheme should reduce sensitivity

2% for spin inversion

Constant magnetic gradient in x/y/z
(71 G/m in z direction)

Spin echo sequences used (see Sec. S2) should be in-
sensitive to constant gradients; We see the contrast de-
creasing rapidly even when TR is constant; we should
see splitting in the imaging x-y plane

negligible

Momentum and position are not op-
timized in the same value of T2

Separate optimization did not give any improvement;
Since maximum ∆z is small, effect is negligible

see simulation results

Phase noise (the average population
standard deviation of the experimen-
tal results is 3.35%)

We measure the effect of phase noise on the output
population (e.g. see Fig. S7, and in main text Fig. 1C
and Fig. 5), and it is too small

3.35%

Initial wave packet is not close to a
minimal uncertainty one, BEC is im-
pure

For most of the data, we observe a BEC with a minimal
BEC fraction is 70%. Thus we don’t expect a loss of
coherence to below that of the BEC fraction

Reduction to ∼70% of
the original contrast.
An exact calculation
for the thermal part
is beyond the scope of
this paper

Spin dependent potential curvature,
causing differential non-linear rela-
tive phase between wave packets

Simulated, should be a small effect see simulation results

Atom-atom repulsion causing wave
packet distortion

Gross-Pitaevskii simulation agrees with Thomas-Fermi
and Castin-Dum simulations

negligible

RF pulses π or π/2 are out of reso-
nance, either due to magnetic ‘tail’
of the gradient pulses, or long term
drifts

Measured ‘tail’ effect is small as we keep time separation
between gradients and RF pulses (see table S2); π pulse
is calibrated between measurements

Reduction to ∼90% of
the original contrast

Fabrication: chip is not symmetric
along y

Initial y position optimization should cancel most of the
effect; Simulated and does not show strong coherence
loss

2% for spin inversion

Mismatch in some other dimension?
e.g. rotation / tilt / spin...

Below our experimental ability to detect, and beyond
the scope of this paper

TABLE S3: Possible sources of coherence loss in the full-loop scheme.

S4. MAIN TEXT FIGURES

In previous sections we have provided numerous details regarding the figures of the main

text. In this section we give for completeness some additional details regarding these figures.

S4.1. Figure 1

Since the thermal interference fringes shown in Fig. 1A suffer from wavelength chirp

due to larger thermal cloud size (compared to a BEC), we fit this image by modifying the

argument of the sine function in Eq. S2 to φ + 2π
λ

(z − zref) + k1(z − zref)
2, where k1 is a

chirping parameter.
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FIG. S15: Polar plot of phase vs. visibility (shown as angle vs. radius), of the 40 consecutive

half-loop SGI interference images composing the multi-shot image in Fig. 1B of the main text. The

experimental parameters are (T1, Td, T2) = (4, 116, 200) µs.

Figure S15 shows a polar plot of the phase of the 40 consecutive shots composing Fig. 1B

of the main text. The splitting pulse duration is T1 = 4µs and after a delay of Td = 116µs

the stopping pulse duration is T2 = 200µs. Time-of-flight is TOF = 6810µs [the parameters

in (A) are almost exactly the same]. As the observed absolute visibility is Vav = 0.76± 0.01,

and the mean of the single-shot visibility is 〈Vs〉 = 0.77±0.03, the normalized visibility VN ≡

Vav/〈Vs〉 is approximately 99% (corresponding to a phase standard deviation of ∼0.1 rad).

In Fig. 1C of the main text we show a high visibility spin population interference pattern.

The data shown in 1C is before normalization, and has a visibility (obtained from fit, see

Sec. S2) of 91.02±7.32%. As the contrast of the ’pure’ Ramsey sequence (without magnetic

gradients) is 95.44±5.01%, the normalized contrast is 95.37±9.16%. T1 = 2µs, Td1 = 168µs,

T2 +T3 = 3.85µs, Td2 = 164.15µs, T4 = 2µs and TOF = 50µs (end of T4 to last π/2 pulse).

S4.2. Figure 2

In Fig. 2 of the main text we show a schematic position-vs-time diagram for both the

half-loop and full-loop longitudinal SGI configurations. Both figures are plotted in the

center-of-mass frame, namely, that of an equivalent atom with mF = 3/2 being accelerated

by the magnetic gradients and gravity.
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As can be seen in Fig. 2A, during the stopping pulse (T2) of the half-loop sequence the

two wave packets have the same spin, meaning that the differential force (originating from

the different distance of the wave packets from the chip at this stage) is small compared to

the force during the first gradient pulse (T1). This means that in order to stop the relative

motion of the wave packets, a long stopping pulse is required, giving rise to an harmonic

potential, due to the shape of the potential created by the chip wires. This harmonic

potential creates a tight focus for the wave packets at time difference Td from the end of T2.

The values of the minimal wave packet width σmin at the focal point are listed in table S1

(calculated using in Eq. S19). Due to this focusing, we achieve the ratio of 4.5-18 between

the wave packet separation and their size, mentioned in the main text.

S4.3. Figure 3

Details regarding the theoretical lines in Fig. 3 are given in the next section. As a pref-

ace let us just note here the accuracy of our numerical wave packet dynamics simulation,

by showing in Fig. S16 the 1% accuracy with which it estimates the basic parameters of

the interferometer, specifically the maximal separation and periodicity of the interference

pattern.

The random vector model data (green lines) were obtained by solving the time-dependent

Schrödinger equation Eq. S6 numerically. The random vector was chosen from a Gaussian

distribution by considering the infinite-correlation length limit. The wave packet was chosen

to be at a distance of 5µm above the quadrupole center. The chosen parameters were

ε = 0.0069 and ε = 0.018, respectively for high visibility and low visibility data. The first

value was estimated from the wave-packet propagation model described in section S5, while

the second is the experimental value used for when producing the added noise. A more

extensive description of the random vector model is given in section S5.

The numerical wave-packet propagation model dashed and solid red lines, for the high

and low-visibility runs, respectively) is based on a full simulation of the interferometric

process as described in section S5. For the high visibility data the model assumes relative

current fluctuations δI1/I1 = 0.3% during the splitting pulse, as measured independently,

and δI2/I2 = 0.14%, during the stopping pulse. As the fluctuations in the stopping pulse

were not directly measured, we use a number that best fits the experimental data. For the low
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FIG. S16: Comparison between the half-loop experimental results and the numerical wave-packet

propagation model. (A) Final z position as a function of the first gradient pulse duration T1. (B)

Residuals showing the difference between the experiment and the simulation in (A). The mean

absolute residual is 1.15%. (C) Periodicity of the interference pattern as a function of the first

gradient pulse duration T1. (D) Residuals showing the difference between the experiment and the

simulation in (C). The mean absolute residual is 0.97%. The lines in (A) and (C) are not monotonic

since these are different points in a multi-dimensional space: T1 is not the only parameter that

changes between each point, but also Td, T2, and the time-of-flight, due to the complex optimization

process.

visibility data we show a line calculated by using the measured fluctuations (δI1/I1 = 1.8%)

during the splitting pulse. The numerical visibility was normalized to the multi-shot visibility

of simulated fringe patterns whose fluctuations are purely due to initial position fluctuations

∆zinitial of 1µm (standard deviation) around z = 87.5µm from the chip. The analytical

visibility (smooth solid line) was calculated by using Eq. (S10) (see section S5 below) with

σz = 1.53µm (wave packet width + initial position uncertainty), κ = 0.86 (µm · µs)−1 and

central distance of z0 = 6.5µm from the quadrupole field center.

Here we would like to explain the error bars of the low visibility data in Fig. 3A, which

are much bigger than those of the high visibility data. As noted in Sec. S2, the normalized

multi-shot visibility is defined as VN ≡ Vav/〈Vs〉, and the error bars are estimated using

Eq. S1. In that equation, the third term under the square root estimates the expected

relative standard error of the normalized multi-shot visibility due to the finite sample size
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[Eq. (S60)], and is given by 1
2N

(
1−V 2

N

VN

)2

. Since for this factor grows larger as VN approaches

0, it results in a large error estimation, even when the number of single shots N is high (N =

138-267 for the low visibility data).

Since the low visibility data presented in Fig. 3A were taken a few months after taking the

high visibility data, the same experimental parameters gave normalized multi-shot visibility

2-10% lower than the original data, due to long term drifts. To suppress the effect of this drift

on the low visibility data, we normalized each measurement to a corresponding one using the

same experimental parameters, in which zero noise was added (i.e. the chip current was held

constant throughout the measurement), such that only ’natural’ noise affected the results.

This normalization means that only the added noise (induced by varying chip current during

the first gradient pulse) affected the drop of visibility in the low-visibility data.

Figure S17 shows a version of Fig. 3 of the main text which includes theoretical predictions

for the random vector model, with both zero-correlation length and infinite-correlation length

assumptions for the fluctuation correlation length (see Sec. S5).

S4.4. Figure 4

Concerning data point 13 of the green data set (∆max
z /σz,BEC ' 4): although out of the

trend of the data we believe it is a valid point. As our interferometer runs on 12 different

parameters (4 gradient chip currents, 4 gradient durations, two delay times, and initial

distance from chip, initial y position), it is not surprising that individual points appear

above the trend due to slightly better optimization. The raw data (population oscillation)

of this point are presented in Fig. S18.

Figure S19 shows a full version of Fig. 4, including all points omitted for clarity from

Fig. 4.

S4.5. Figure 5

Figure 5 of the main text shows the results of the optimization procedure we use in order

to maximize the interference contrast of the full-loop SGI. In the optimization procedure,

we set the durations of the first and last gradient pulses T1 and T4 and also the durations of

the delay times Td1 and Td2 (usually T1 = T4 and Td1 = Td2 to begin with). We then measure
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FIG. S17: Half-loop results for the random vector model, see section S5.1. We numerically solve

the model by applying the Crank-Nicolson algorithm [48], for two extreme cases: The first model

assumes fluctuations with zero correlation length. This describes a situation where fluctuations

in the magnet are local and the atom is very close to the magnet so that there is no spatial

averaging. Such fluctuations may originate in Johnson noise or a local response e.g. of magnetic

domains, impurities and geometrical defects to global temperature or vibrational fluctuations.

The second model assumes the other extreme limit in which the fluctuations are global and the

correlation length is infinite. This limit is more relevant to our experimental situation in which

current fluctuations are the dominant source of randomness. In the future, as current fluctuations

go down to the shot-noise level and below (squeezed currents, e.g. [39]) so that Johnson noise

becomes dominant, or when permanent magnets are used, both limits will be important.

the output population of the full-loop SGI sequence as a function of the second and third

gradient pulses T2 + T3 durations, while keeping the total duration T2 + T3 + Td2 constant.

A typical result is that shown in the inset of Fig. 5, fitted to a Gaussian envelope times a

sine function. The Gaussian envelope corresponds to the timing at which the wave packets

overlap at the end of the interferometer, where the peak of the envelope is the maximum

of the overlap integral, roughly corresponding to zero momentum between the wave packets

(although the spatial position also has some contribution). The sine function corresponds

to the added phase between the two interferometer arms, per units time of T2 + T3. Ideally
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FIG. S18: Fractional population in the mF = 1 state as a function of the applied phase shift

φ between the Ramsey π/2 pulses, for data point 13 of the green data set shown in Fig. S19

(experimental parameters are listed in table S2). The contrast resulting from the fit is C =

3.71 ± 2.67%. As the contrast of the ’pure’ Ramsey sequence (without magnetic gradients) is

71.20± 6.82%, the normalized contract is 5.21± 3.78%. The number of averaged single shots per

point is 4.

for linear magnetic gradients, we would expect the peak overlap to occur when the sequence

is symmetric i.e. T1 + T4 = T2 + T3. However due to the asymmetry of the magnetic

potential created by the chip wires in the z direction, the optimal point is below or above

the symmetric time (the specific number depends on the scheme used - spin inversion or

current inversion).

The numerical wave-packet propagation model gives similar results concerning the opti-

mal time of T2 +T3, and the population oscillation as a function of T2 +T3. However, there is

a discrepancy between the experiment and the simulation regarding the maximum achieved

overlap integral and consequently the visibility, as can be seen in Fig. 4 of the main text.
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FIG. S19: Figure 4a,b of the main text (analysis of stability and precision), including all data

points appearing in table S2, some of which have been omitted for clarity from the main text

version (as explained in the caption of table S2).

S5. THEORETICAL MODELS

In this section we present the analytical and numerical models used for generating the

theoretical values appearing in Figs. 3, 4.

S5.1. A random vector model for an SGI

We start by utilizing the randomized Hamiltonian model, governed by a disorder param-

eter ε, to describe TI. We consider two extreme cases. The first model assumes fluctuations

with zero correlation length. This describes a situation where fluctuations in the magnet are

local and the atom is very close to the magnet so that there is no spatial averaging. Such

fluctuations may originate in Johnson noise or a local response e.g. of magnetic domains,

impurities and geometrical defects to global temperature or vibrational fluctuations. The

second model assumes the other extreme limit in which the fluctuations are global and the

correlation length is infinite. This limit is more relevant to our experimental situation in

which current fluctuations are the dominant source of randomness. In the future, as cur-
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rent fluctuations go down to the shot-noise level and below so that Johnson noise becomes

dominant, or when permanent magnets are used, both limits will be important.

The atom-chip SGI presented here is, in a first approximation one-dimensional in the

direction of gravity, perpendicular to the chip plane [35, 36]. This allows for a simple

theoretical study with a tractable model, where we utilize a 1D Schrödinger equation for

each wave packet ψj(z, t), corresponding to the two spin states. During the pulse duration

T the relevant equation is:

ih̄
∂ψj(z, t)

∂t
= − h̄2

2m

∂2ψj(z, t)

∂z2
+ Vmj(z)ψj(z, t) + εVε,j(z)ψj(z, t), (S6)

where Vmj(z) is the magnetic potential energy of the wave packet j due the pulse from the

chip wires. The term Vε,j (a vector with 3000 elements, where each element corresponds to

5 nm in real space) describes randomness in the magnets that results from the effects of the

environment, including also the operational limitations [43]. This may provide a reasonable

model for both the half-loop and full-loop SGI.

However, in the main text we present this model only for the half-loop data as the model

does not take into account the specifics of the experiment (in Fig. 4 we show the theory lines

provided by the numerical wave-packet propagation model which is described in the following

and which we consider to be more accurate in simulating the specifics of the experiment).

The specifics of the experiment which our random vector model does not take into account

are the wire widths, the effect of the stopping pulse duration (the second pulse in the half-

loop configuration), and the propagation time as well as the time-of-flight. Furthermore, it

does not use the Gross-Pitaevskii equation but rather the schrödinger equation (this is not

a bad approximation as the BEC is expanding in free-fall and the interactions are small).

These simplifications were made in order to save run time. Most importantly, we believe

the random vector model is less appropriate for the full-loop configuration, as it is not clear

how to use a randomization parameter to describe the precision of the magnets, for which

we have no good model. Namely, even if we manage to get a good fit to the data, the

interpretation of the model in terms of the actual physical processes taking place will be

hard.

We will now concentrate on the model for the half-loop experiment. The average over dif-

ferent random-number seeds simulates the shot-to-shot temporal fluctuations (due to current
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fluctuations in our apparatus and temperature fluctuations or initial position fluctuations

in the permanent magnets).

In our simulation Vε,j is different for different j = 1, 2 as each spin state is in a different

region of space and may encounter different randomization. The index j also affects the

calibration of the random term such that Vε,j = VεVmj , where Vε is a random diagonal

matrix. We simulated two different limits which are the zero-correlation and the infinite-

correlation models. In the zero-correlation model, the elements of Vε are randomly taken

between −1 and 1 with a width equal to 1/
√

3. In the infinite-correlation model, all the

components of Vε are equal to a single random number also chosen between −1 and +1. In

both cases, Vε is reloaded from one shot to another thus mimicking the randomness of our

pulses. The magnetic potential in our experiment is Vmj(z) ≈ 10−27 J. In our three-layer

system (environment–magnet–probe), the signal is a measure of TI in the magnets and is of

course also affected by the strength (and duration) of the coupling between the probe atom

and the magnet. Numerous works have directly utilized Vε in relation to TI and the arrow

of time (e.g. [44]). Each realization of Vε (single-shot) yields perfect visibility. Like in the

experiment, the eventual visibility reduction occurs from averaging over many realizations.

Hence, the stochastic time evolution is replaced by an ensemble average. Finally, Eq. (S6)

is an alternative to the usual density-matrix approach. The effective Schrödinger equation

used here and the density-matrix approach are known to be equivalent [45–47].

We calculate the interference function between the two wave packets ψj(z, T ), after mixing

the internal spin states with a π/2 pulse, namely nε(z, T ) = |ψ1(z, T ) + ψ2(z, T )|2, where

ψj is the solution of Eq. (S6). Only the splitting pulse is accounted for, namely we do

not examine the effect of the stopping pulse duration. Furthermore, we do not take into

account propagation time or time-of-flight. This is justified by the optimized recombination

sequence mentioned above, which is assumed to represent an almost perfect 180◦ phase space

rotation (Fig. S24). This gives rise to a measured interference pattern having approximately

the same shape (in scaled coordinates) as the interference pattern formed right after the

splitting, which is what is simulated in our model. The numerical solution of Eq. (S6) was

obtained by applying the Crank-Nicolson algorithm [48]. Simulation parameters are chosen

so as to match the experiments. The visibility is calculated by averaging over the different

interference patterns obtained for many realizations of Vε.

The source of the magnetic potential Vmj(z) for the two wave packets during the gradient
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pulse is modeled by three parallel wires extending along x, infinitely long and having zero

thickness. This gives rise to the analytic form

Vmj(z) =
αj
z

(1− 2

1 + ( zw
z

)2
), (S7)

where,

α = mFjgFj
µBµ0I

2π
, (S8)

and where mFj = 1, 2 for j = 1, 2 are the projections of the hyperfine levels (i.e. Zeeman

sub-levels), gFj = 1
2

is the Landé factor, the current magnitude is on the order of I ≈ 1A,

and the inter-wire distance is zw = 100µm. The homogeneous bias field is assumed to be

constant and we therefore ignore it. The center of the quadrupole field (zero magnetic field)

in this model is equal to the inter-wire distance zw = 100µm. Since the initial experimental

position is about 5µm above the zero of the quadrupole, in this simulation, we choose

zquad = 100µm and z = 95µm, respectively.

The visibility is then obtained analogously to the experiment: many single-shot interfer-

ence patterns (in the simulation, each with its own random vector, and each giving 100%

visibility) are averaged to give a multi-shot pattern 〈nε(z, T1)〉 with reduced visibility due to

shifts of the individual patterns. In Fig. S20, we show 〈nε(z, T1)〉 = 〈|ψ1(z, T ) + ψ2(z, T )|2〉

for different values of ε. The averaging 〈. . .〉 is over samples of up to Nc = 1000 configura-

tions of Gaussian disorder. The influence of the magnitude of ε on the interference pattern

is evident. For ε = 10−6, we did not observe any disappearance of the fringes for the longest

pulse simulated, T1 = 100µs. Hence for this ε the system is nearly reversible. The simulated

visibility is obtained from Fig. S20 by a simple fit of the form

nε(z, t) = A exp[−(z − z0)2

2σ2
][1 + Vε(t) cos[k(z − z0) + β(z − z0)2 + φ)], (S9)

where k = 2π/λ represents the fringe periodicity λ and the quadratic term β(z − z0)2

accounts for spatial frequency chirp within the pattern.

In Fig. S21, we show Vε(t) as a function of the splitting pulse duration for ε = 10−3,

ε = 10−4, and ε = 10−5. The finite sample size at each time implies a standard error of

the order of δVε ∼ (1 − V 2
ε )/
√

2N [see Eq. (S60)]. In order to compare the experimental

data (Fig. 3 of the main text) to the theoretical model while eliminating the statistical
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FIG. S20: Time evolution of the interference pattern nε(z, t) for ε = 10−3 (A), ε = 10−4 (B), and

ε = 10−5 (C). The center of the cloud starts at z0 = 95µm, 5µm from the simulated quadrupole

center. At short times (< 4µs) the total number of atoms oscillates between the two states |±〉 ≡
2−1/2(|mF = 2〉 ± |mF = 1〉) and at later times the atomic population of each of these states

(specifically nε(z) of the sate |+〉 in the figure) creates an interference pattern representing a

superposition of two momentum states eikjz (j = 1, 2), where the momentum difference |k1 − k2|
(number of fringes per unit length) grows linearly with time. As ε becomes larger the visibility of

these fringe patterns decreases faster in time. As shown in the main text and Sec. S2 above, the

shape of the fringe patterns shown here just after a splitting pulse of a variable duration represents

the shape of the corresponding fringe patterns observed after the complete interferometric sequence,

given that the dominant source of TI acts during the splitting pulse. Hence the visibility of the

simulated patterns shown here represents the visibility expected in the experiment.

errors, we fit the visibility Vε resulting from the simulation to the simple form Vε(t) =

exp[−∑3
j=1Aj(ε)t

j], shown by the solid curves in Fig. S21. At low visibilities the numerical

points are usually higher than the fit as the statistical noise forces the absolute value of the

visibility to saturate at 〈Vε〉 ∼ 1/
√

2N ∼ 0.07. The expected uncertainty of the finite sample

visibility is represented by the dashed curve, one standard deviation above the visibility for

ε = 10−3.

S5.2. Analytical model for half-loop visibility

We now present a simple analytical model for multi-shot visibility in a half-loop interfer-

ometer (namely, spatial interference fringes) with instability. The model was used for the

low visibility data in Fig. 3 of the main text (with no free parameters!). The model assumes

fluctuations with an infinitely long correlation length, namely, noise in global parameters

of the system. We assume that the final interference fringes observed in the experiment

represent the interference of two similar wave packets ψj (j = 1, 2) with fluctuations δφ
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FIG. S21: The visibility Vε(t) as a function of t for different values of ε. The solid lines represent

a fit to the function Vε(t) = exp[−
∑3
j=1Aj(ε)t

j ] (without taking into account the range of low

and noisy visibility where Vε(t) < 0.2). The fitting parameters Aj(ε) (1 < j < 3) were used for

comparing the random vector model to the experimental results in Fig. 3 of the main text.

of the central phase difference, momentum difference uncertainty h̄ δk and center distance

fluctuations δz. If we neglect fluctuations of the delay time between the two pulses and

fluctuations in the second (stopping) pulse and assume that the second pulse is optimized

to completely stop the relative motion between the two wave packets, then the analysis

following the phase space description in section S6 implies that the fluctuations in the final

fringe correspond exactly to fluctuations in the phase, momentum, and position of the wave

packets just after the splitting pulse. The phase fluctuations δφ are due to the uncertainty

in the absolute magnetic field at the wave-packets center during the splitting pulse, and the

momentum fluctuations h̄δk are due to fluctuations of the gradient strength during split-

ting, while position fluctuations δz are mainly due to fluctuations in the initial wave packet

position. Position fluctuations due to splitting momentum fluctuations are negligible for a

short splitting pulse (as in the experiment) and an optimized stopping pulse so we neglect

position fluctuations. Assuming a Gaussian wave packet shape |ψ0(z)| ∝ exp[−z2/2σ2
z ] and
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Gaussian distribution of the random variables, we obtain a visibility (see derivation below

in section S9, Eq. (S54))

V =
exp

[
−1

2
〈δφ2〉

1+σ2
z〈δk2〉

]
√

1 + σ2
z〈δk2〉

. (S10)

Note that this expression corresponds to a definition of the visibility as the relative ampli-

tude of the Fourier component of the fringe pattern that oscillates in space with a certain

periodicity due to the momentum difference between ψ1 and ψ2. Fluctuations of the mo-

mentum between the two wave packets correspond to different periodicities of single fringe

patterns such that the oscillation amplitude (local contrast) of the multi-shot fringe pattern

varies along the pattern. The expression in Eq. (S10) is based on a Fourier transform of

the pattern, taking into account this variation of the oscillation amplitude. In the case of

our experiment we believe that the central phase and the momentum fluctuations are cor-

related since they are both due to current fluctuations in the wire. The ratio between phase

fluctuations and momentum fluctuations is δφ/δk = z0, where z0 is the distance of the wave

packet center during the splitting from the center of the quadrupole, where the magnetic

field of the pulse is zero. If δk and δφ are not correlated then the denominator inside the

exponent becomes 1 and the expression for the visibility can be factored into an exponential

term exp(−〈δφ2〉/2) due to phase fluctuations and a term (1 + σ2
z〈δk2〉)−1/2 due to momen-

tum fluctuations. Note also that if the visibility is defined as the contrast of the fringes at

the center of the fringe pattern such that the variation of the contrast along the pattern is

neglected, then the visibility is restricted to the exponential term which is generated by the

phase fluctuations at the center.

The expression for the correlated phase and momentum fluctuations in Eq. (S10) implies

that when σ2
zδk

2 � 1 the visibility is determined by δφ2. However, when σ2
zδk

2 > 1 the

visibility drops like ∼ 1/
√

1 + δk2σ2
z .

For generating the analytic curves in Fig. 3 of the main text we express the visibility

in terms of the relative current fluctuations η ≡ δI/I (or, equivalently, the relative timing

fluctuations η ≡ δT/T ). The relative final momentum fluctuations δk/k are equal to η,

so that δk = ηκT , where κ = ∂k/∂T is the final momentum per kick time in for the

parameters used in our half-loop SGI (current and distance from the chip). For a given

distance z0 from the center of the quadrupole, since the phase difference due to the splitting

pulse is proportional to the momentum kick φ(z0) = z0δk, we get δφ = κz0ηT . It then

52



follows that the visibility is V (T ) = exp
[
−1

2

η2κ2z2
0T

2

1+σ2
zκ

2η2T 2

]
/
√

1 + σ2
zκ

2η2T 2. One can identify

two extreme cases: in the first the atoms are close to the center of the quadrupole field

responsible for the splitting, and consequently do not suffer from large phase fluctuations

as the magnitude of the magnetic field is small. They do however suffer from momentum

fluctuations δk. In the second, the atoms are far from the center of the quadrupole and

consequently the phase noise is the main source of randomness.

S5.3. Numerical model for BEC wave-packet propagation

Here we describe the numerical model that was used for calculating the theoretical

values for the visibility (numerical wave packet propagation) in Figs. 3, 4 of the main

text and some other results given in this Supplementary Material. These calculations

use a wave-packet propagation model in which the center-of-mass coordinates of the two

wave packets are calculated by solving the Newton’s equations of motion under the in-

fluence of gravitational acceleration and the magnetic force (magnetic potential gradient)

FmF (r, t) = −mFgFµB∇|B(r, t)|, where µB is the Bohr magneton and gF is the Landé fac-

tor. The magnetic field B(r, t) is obtained by using the Biot-Savart law from a simulation

of the currents in the chip wires and the external bias field. In addition, the size of the

wave packets and their quadratic phase are calculated by using a Thomas-Fermi dynamical

model for a wave packet evolution in a time-dependent harmonic potential [49]. We take the

instantaneous harmonic frequency at the location of the center of each wave packet to be

given by ω2
j (t) = 1

m
∂Fj/∂xj for the three cartesian coordinates xj = (x, y, z). This provides

an estimation of the expansion or focusing of the BEC wave packets. The center-of-mass

phase of each wave packet is given by the action

φ(t) = S(t)/h̄ =
1

h̄

∫ t

0
dt′[P(t)2/2m− Vm(r(t), t)]. (S11)

This phase together with the linear and quadratic phase along the wave packets determines

the relative phase of the spatial fringe patterns in the half-loop experiment. For simulating

the multi-shot visibility due to instability of parameters such as the current in the wires

(proportional to the magnetic field during the gradient pulse) and instability of the duration

of the pulses, we take a Gaussian distribution of such shot-to-shot fluctuations and sum
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FIG. S22: wave packets (WP) relative distance (solid line) and size (standard deviation σz =√∫
dz (z − 〈z〉)2|ψ(z, t)|2, dashed line) along the z direction as a function of time for the data point

at T1 = 10µs of the high visibility data of Fig. 3 in the main text (see table S1 for parameters).

WP distances and widths along the x and y directions are also calculated but not shown. The size

near the focus point (t ≈ 0.39 ms) is much smaller than expected because the calculation based

on Ref. [49] neglects the kinetic term in the Gross-Pitaevskii equation, which is responsible for the

minimum WP size.

up many fringe patterns calculated from evolution under the influence of the fluctuating

parameters and obtain the multi-shot visibility for the given distribution.

The visibility in the full-loop configuration (Fig. 4) is calculated directly by taking the

overlap integral between the two approximate forms of the wave packets after evolution

under the influence of the gradient pulses with the given parameters. Each of the wave

packet has a scaled Thomas-Fermi shape.

Note that the wave-packet propagation model allows a fast calculation of the dynamics

in the three-dimensional space. It is then possible to investigate the expected effects of

distortions or tilts of the system beyond the one-dimensional approximation of propagation

along the z axis. This allowed us to check hypotheses about the source of the reduced

visibility in the full-loop SGI experiment (see section S3).

Fig. S22 shows the results of the calculation of the distance between the wave packets and
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their width (standard deviation) as a function of time for the experimental data point with

splitting time T1 = 10µs in Fig. 3 (half-loop SGI). The wave packets (having approximately

the same widths) start to expand at the initial time (0.92 ms) after trap release and before

the first magnetic gradient pulse. Then the magnetic pulses create a curved potential which

causes the focusing of the wave packets, leading to a minimal wave-packet size at a time Td

after the end of the stopping pulse (of duration T2) (see also analytical expressions for the

dynamics in section S6). The simulation shown in the figure is based on a Thomas-Fermi

approximation [49] and neglects the kinetic term whose dynamics are important when the

wave packet size is minimal, so the wave packets size near the maximally focused point is

imperfectly reproduced by this calculation. See Eq. (S19) below for an analytic approxima-

tion of the minimal size. The wave packet sizes and location along the x and y directions

are also calculated but not shown in the figure. The sizes along the x and y directions are

much larger than the size along the z direction since the focusing effect occurs only along

the z direction.

Note that the above dynamic Thomas-Fermi based approximation does not take into

account the repulsive interaction between wave packets that start to separate but still over-

lap, i.e., it includes only the effect of an atomic distribution having a Thomas-Fermi shape.

In order to verify that this does not reproduce qualitatively different results compared to

a full Gross-Pitaevskii calculation taking into account all the repulsive interactions within

and between wave packets, we have performed a few calculations with a full solution of the

Gross-Pitaevskii equations in either one- or three-dimensions. The results are very similar

to those of the approximated method so we are confident that for non-extreme cases as in

this work we can use our approximation, which provides a much faster method that can

allow calculations of stability and precision in a reasonably short time.

S6. PHASE SPACE DESCRIPTION OF THE STERN-GERLACH INTERFER-

OMETER

In order to gain a qualitative and quantitative understanding of the interferometric se-

quence in our experiment (specifically the half-loop SGI), we use the position-momentum

phase space description in the Wigner representation, which is completely equivalent to the

Schrödinger picture. This description allows us to derive some quantitative estimations of
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FIG. S23: Full-loop SGI scheme in phase space (scalar Wigner function representation obtained

by projection into a spin eigenstate of Ŝx, red – positive and blue – negative). The initial single

wave packet (centered at p = 0 and z = 0, not shown) is split into two momentum components (a),

giving rise to a spatial interference fringe pattern (upon projection onto the position axis, shown

at the bottom). Such spatial interference is made possible in reality if the two wave packets are

manipulated to have the same spin (effectively undoing the entanglement between path and spin),

as done in our half-loop experiment just after splitting. Red arrows correspond to actions driven by

the magnetic field giving rise to the observed wave packet position, whereas black arrows correspond

to evolution due to free propagation which follows the present wave packet position in the plot and

giving rise to the next plot. (b) After some free propagation, the wave packets separate. (c) The

momentum of each wave packet is inverted (effectively as done by the inverted current pulses in

our full-loop experiment) and the two wave packets propagate back to the original position. (d)

After some propagation the wave packets again overlap in space. If the two momentum states are

in the same internal atomic state, spatial fringes are again visible. If the two wave packets have

a different internal state and a stopping pulse overlaps them also in momentum space (as in our

full-loop SGI experiment) then the final internal state depends on the phase accumulated during

the process and the fringes are in spin space. The phase space fringes in (d) are due to a 180◦

rotation of the fringes in (a).

the wave-packet width and separation during certain parts of the sequence, as we show

below. Our phase space description of the atomic dynamics is motivated by our previous

work [41]. See also a recent theoretical treatment of the Stern-Gerlach experiment with

phase space methods in Ref. [42].

The phase space dynamics in the full-loop SGI and the half-loop SGI is demonstrated

in Figs. S23 and S24, respectively. For the full-loop configuration the scalar Wigner func-

tion representation is allowed by projecting the wave function ψ+|+〉 + ψ−|−〉, which is an
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FIG. S24: Half-loop SGI phase space dynamics (arrows and color code as in Fig. S23). We start

with the state presented in Fig. S23(b) (with the two wave packets having the same spin) but,

different from Fig. S23(c), the momentum is not inverted but rather brought to zero. (a) The two

wave packets after they have been brought to a halt by a stopping pulse. The change of direction

of the long axis of the wave packets is due to the curvature of the magnetic field. (b) after free

evolution for a time equal to the initial propagation time [between Fig. S23(a) and Fig. S23(b)],

the wave packets are now focused so that they have a minimal width in real space. (c) further free

propagation (TOF) now rotates the phase space image so that spatial fringes become visible (upon

projection onto the spatial axis, shown at the bottom). This is our signal.

entangled spin-path, into an eigenstate of the spin operator Ŝx, giving rise to an equal super-

position of ψ+ and ψ− corresponding to the two spin states. In the half-loop configuration

the wave-function is manipulated to be a superposition of two wave packets with the same

spin just after the splitting stage, such that the scalar Wigner function representation is ap-

propriate without further projection. In what follows we provide a mathematical description

of the dynamics in the half-loop configuration and provide some mathematical expressions

for the expected wave packet positions and sizes.

We start by defining a phase space rotation represented by the rotation matrix

R(ω, t) =

 cosωt sinωt
mω

−mω sinωt cosωt

 . (S12)
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This rotation describes the time evolution of the phase space variables

 z

p

 in the presence

of a harmonic potential with angular frequency ω. In the limit ω → 0 this rotation describes

free space propagation

R(0, t) ≡ lim
ω→0
R(ω, t) =

 1 t/m

0 1

 . (S13)

The interferometric scheme starts with two wave packets having the same spatial shape

but two different spin states, which we assume here to be opposite spins for simplicity. A

splitting pulse of duration T1 splits the two wave packets into two momenta ±h̄k/2. After

this momentum kick the two wave-packet centers move to a distance ±h̄kT1/4m from the

initial position. We set the time to be t = 0 at the middle of the pulse, such that if we

reverse the velocity of the wave packets at the end of the pulse and project their position

back by free propagation into t = 0 they would be at the initial point Z = 0 and having

momentum P = ±h̄k/2. This will be the starting point of our scheme.

After a time Td of free propagation we apply a stopping pulse of duration T2. In the

full-loop SGI this stopping pulse may be given by a homogeneous gradient in a direction

opposite to the initial splitting pulse, which will bring back the two wave packet into a

relative stop. However, in our scheme we continue the interferometric sequence with the

two wave packets in the same spin state and apply a harmonic potential of frequency ω and

duration T2 to stop the relative motion [Fig. 2A of the main text]. As we see below, this

pulse also serves to focus the wave packets into a minimal wave packet size. After this pulse

the center coordinates become

 Z(Td + T2)

P (Td + T2)

 = R(ω, T2)R(0, Td)

 0

±h̄k/2



= ± h̄k
2

 Td
m

cosωT2 + 1
mω

sinωT2

−ωTd sinωT2 + cosωT2

 . (S14)

The stopping pulse of length T2 is designed such that P (T2) = 0. In this case

sinωT2 =
1√

1 + ω2T 2
d

, cosωT2 =
ωTd√

1 + ω2T 2
d

. (S15)
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Note that the condition for stopping ωTd tanωT2 = 1 does not depend on the initial

momentum kick so that momentum fluctuations are not expected to affect the velocity of

the two wave packets after stopping and hence the final position of the interference fringes in

our experiment. As we show below fluctuations in the initial momentum kick are expected

to affect the distance between the wave packets after stopping and hence the periodicity of

the interference fringes measured in the experiment.

We now look at the state of the atoms after another free-propagation time Td [Fig. 2B

of the main text]. The combination of the three operations: propagation for a time Td,

harmonic stopping pulse for a time T2 satisfying Eq. (S15) and another propagation time Td

transforms a general phase space coordinate as

R(0, Td)R(ω, T2)R(0, Td)

 z

p

 =

 ξ
mω
p

−mω
ξ
z

 . (S16)

This sequence leads to a complete rotation of phase space by 90◦, while scaling the phase

space coordinates by the squeezing factor

ξ =
√

1 + ω2T 2
d . (S17)

At this time the spatial distribution consists of two wave packets at z = ±d/2, where

d =
ξ

mω
h̄k, (S18)

and where in the limit of fast stopping relative to the propagation time ωTd � 1 the distance

is d → h̄kTd/m. If the initial wave packet at t = 0 is a minimal uncertainty state where

the initial position and momentum uncertainties satisfy σz,0σp,0 = h̄, then the distribution

corresponding to each of the two wave packets at time T = 2Td + T2 has a minimal spatial

width

σmin =
ξ

mω
σp,0 =

h̄ξ

mωσz,0
. (S19)

In the limit ωTd � 1 this becomes σmin = h̄Td/mσz,0. Note that if the initial momentum

kick is large enough to fully separate the two wave packets, namely, h̄k � σp,0, then after

the full stopping at time t = 2Td + T2 the distance between the two wave packets is much

59



larger than their size d/σmin = h̄k/σp,0 � 1.

After stopping the relative motion between the two wave packets we allow them to expand

in free space for a long time t until they overlap and form a spatial interference pattern at

a large scale [Fig. S24 (c))], which is equivalent to applying R(0, t) for t � mσ2
min/h̄, we

obtain a spatial fringe pattern with fringe periodicity

λ =
2πh̄t

md
(S20)

and an overall Gaussian envelope width of

σz,f = h̄t/mσmin = σz,0tω/ξ. (S21)

The number of observed fringes is then given by nfringes ≈ 2σz,f/λ = kσz,0/π, namely,

the same number of fringes of the initial microscopic fringe pattern formed just after the

momentum kick of the beam splitter.

S7. A GENERALIZED HUMPTY-DUMPTY (HD) THEORY FOR AN SGI

In this section we derive the expected visibility (spin-coherence) of a full-loop SGI of the

type implemented in this work, using a generalized version of a theory by Englert, Scully,

and Schwinger(ESS)[6]. We first derive a general equation for a general input state. Then

we obtain a modified expression for the visibility in a full-loop SGI where the final state is

not designed to be exactly similar to the initial state.

S7.1. Interference visibility for a general initial state

Here we introduce the theoretical basis for the analysis of interference visibility in the

context of our SGI. We consider an SGI whose input is a cloud of two-level atoms in a given

eigenstate of the spin. The initial spatial state is characterized by a single-particle density

matrix of the spatial degrees of freedom that can be described as a statistical mixture of
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wave-function out of an orthogonal set,

ρ(r, r′) =
∑
j

Pjψj(r)ψ∗j (r
′), (S22)

where ψj(r) are spatial wave functions of the atom and Pj are the probabilities for an atom

to occupy these wave functions.

The interferometric sequence consists of a π/2 pulse creating a superposition of the two

spin states 1√
2
(|+〉 + |−〉), a magnetic field gradient for splitting, additional gradients for

reversing the motion and for stopping and a final π/2 pulse for mixing the spin population.

These operations are represented by the following unitary operator,

Û(tf , 0) = e−iŜyπ/2h̄(U+|+〉〈+|+ U−|−〉〈−|)e−iŜyπ/2h̄, (S23)

where the first and the last term of the r.h.s. are the initial and the final π/2 pulses

(Ŝy = − ih̄
2

(|+〉〈−| − |−〉〈+|)) and U± represent the spatial evolution of the two spin states

(with and without the gradient fields). The population difference at the output of the

interferometer is then measured. This is represented by the expectation value of the operator

Ŝz = h̄
2
(|+〉〈+| − |−〉〈−|),

〈Ŝz〉f = 〈Û †(tf , 0)ŜzÛ(tf , 0)〉0

=
1

2
〈[(U †+〈+|Ŝx|−〉U− + U †−〈−|Ŝx|+〉U+]〉0 =

h̄

4
〈U †+U−〉0 + c.c., (S24)

where we have used eiŜyπ/2h̄Ŝze
−iŜyπ/2h̄ = Ŝx and 〈±|e−iŜyπ/2h̄|±〉 = 〈±|e−iŜyπ/2h̄|∓〉 = 1/

√
2,

assuming that the initial state is a spin |+〉.

The visibility of the interferometric signal is given by the maximal population difference

when the phase between the two arms is set to zero. At this point we expect that the

visibility would be unity if the operations on the two spin states during the sequence lead

to exactly the same final state at tf , namely U+ = U−. However, due to inaccuracies the

operations are not the same and may lead to different results for different initial states. In

general, the visibility is given by an integral over the density matrix after the evolution,

V =
2

h̄
〈Ŝx〉max

t =
∣∣∣Tr{ρU †+U−}

∣∣∣ =
∣∣∣∣∫ d3r ρ−+(r, r, t)

∣∣∣∣ , (S25)
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where

ρ−+(r, r, t) =
∑
j

Pjψj−(r, t)ψ∗j+(r, t), (S26)

with ψj± = U±ψj. For an initial pure state where only one Pj is unity while the others are

zero, the visibility is the overlap integral of the two wave packets when the mutual phase is

set to zero (here we assumed that U †+U− differs from U †−U+ just by a global phase factor).

If instead of recombining the spin state at a specific time t0 we let the two wave packets

propagate with a Hamiltonian Ĥ0 that does not depend on spin and recombine them at

time t then the visibility would not change, as for a spin-independent evolution operator

U(t, t0) = e−iĤ0t/h̄ we have

V (t) = Tr{U(t, t0)ρ−+(t0)U †(t0, t)} = Tr{ρ−+(t0)U †(t, t0)U(t, t0)} = Tr{ρ−+(t0)} = V (t0).

(S27)

This implies that after the sequence of gradient pulses it does not matter when the final π/2

pulse is performed so that the final state of the atoms at the output of the interferometer does

not need to be similar to the initial state. In what follows we derive a more specific expression

for the overlap integral as a function of the final wave-packet parameters, regardless of

whether the state at the output is a minimal uncertainty state or whether it is similar to

the initial state. Before that, we will re-derive the original expression of the HD theory.

S7.2. The HD theory and its application to the calculation of the visibility

In Ref.[6] ESS assumed a specific situation in which the accurate SGI completes a full

reversal of the initial state at the output port or at least brings the two wave packets into a

state that is exactly the same as the initial state in a specific frame of reference. Imperfections

are assumed to give rise to relative momentum shifts ∆p and/or position shifts ∆r of the

final wave packets at the time t = tf , such that

U †+U− = ei(∆r·p̂+∆p·̂r)/h̄. (S28)

Then it follows that the population difference at zero phase (the visibility) is given by

V =
2

h̄
〈Ŝz〉max

f = 〈ei(∆p·̂r+p̂·∆r)/h̄〉0
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=
∫
d3r ρ(r, r−∆r)e−i∆p·r/h̄ =

∫
d3pρ(p,p−∆p)eip·∆r/h̄. (S29)

We first consider the case of a pure momentum shift (∆r = 0). In this case the visibility

is proportional to the Fourier transform of the density ρ(r) = ρ(r, r). If the density along

the axis of the momentum shift (say, along ẑ) is a Gaussian with a standard deviation σz

then the visibility becomes

VG(∆pz) = e−
1
2
σ2
z∆p2

z/h̄
2

. (S30)

In the case where the initial state is a minimal uncertainty Gaussian state where σzσp = h̄/2

we have VG = exp[−1
2
(∆p/2σp)

2], which is an expression similar to that of Ref. [6], where

the momentum separation was defined as half the momentum separation in this derivation,

and hence the factor 2 difference in the exponent.

If the initial distribution is a parabolic Thomas-Fermi distribution of a BEC ρ(r) ∝

max
{

1−∑j=x,y,z r
2
j/r

2
j,max, 0

}
then the visibility is

VTF (∆pz) =
15

ξ5
(3 sin ξ − ξ2 sin ξ − 3ξ cos ξ). (S31)

where ξ = ∆pzzmax/h̄. This function can be fairly well approximated by VTF ≈ e−∆p2
zZ

2
max/12h̄.

This corresponds to a gaussian approximation for the spatial size σTFz ≈ 0.41zmax. If the

BEC wave packet was considered as a minimal uncertainty wave packet in its Gaussian

approximation then we would use the momentum width δpz ≈ 0.41h̄/2zmax. However, note

that a Thomas-Fermi spatial distribution is not a minimal uncertainty state so that the real

width of the momentum distribution of this state is larger than h̄/2σz. In addition, if the

BEC is allowed to expand in free space then the atom-atom repulsion would increase the

width of the momentum distribution after expansion, while the overlap integral between

two BEC wave packets with different momenta does not change. It follows that the relevant

momentum distribution for the HD formula remains h̄/2σz although the real momentum

distribution has a larger size.

In the other case where only a position shift ∆z is involved, the visibility according

to Eq. (S29) is a Fourier transform of the momentum distribution ρ(p) = ρ(p,p). For a

Gaussian momentum distribution we obtain a result similar to the result for the visibility
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of a Gaussian position distribution

VG(∆z) = e−
1
2
σ2
p∆z2/h̄2

. (S32)

For a Thomas-Fermi distribution we obtain numerically a visibility that drops like

VTF (∆z) = e−∆z2/2σ2
TF , (S33)

where σTF = 0.6249 zmax, unlike the case of the momentum mismatch.

Note that in Eq. (S29) ρ(r, r′) and ρ(p,p′) are the position and momentum representa-

tions, respectively, of the initial density matrix, which is assumed to be the density matrix

of the final state in the case of a completely accurate operation. In general, while the

visibility or spin-coherence in the SGI does not depend on the time where the final π/2

pulse is applied, the expectation value of the operator ei(p̂·∆r+r·∆p)/h̄ does depend on time

even in the case of propagation in free space represented by an operator Û0 = e−iĤt/h̄, as

Û †0e
i(p·∆r+r·∆p)/h̄Û0 = ei(p·(∆r+∆pt/m)+r·∆p)/h̄. At long enough time even a slight momentum

difference would shift the final distance between the two wave packets by a distance that is

larger than the their initial width, giving rise to zero coherence according to Eq. (S29). This

result is wrong. As we show below the distance ∆r should be taken at the time where the

two wave packets are at their minimimal width rather than at the time of the measurement.

S7.3. The generalized HD theory

As noted above, the ESS theory has used a simplifying assumption that the final form of

the wave packets at the output of the SGI is close to the initial state, which is a minimal

uncertainty state or a mixture of minimal uncertainty states. It has also assumed that the

main effect of inaccuracy is either a position shift or a momentum shift of the wave packets

with respect to each other. Here we provide an analytic expression for the overlap integral of

more general wave packets, which is consistent with the requirement that the overlap integral

does not change in time if the evolution of the two wave packets is spin-independent.

In the more general case we assume a time-dependent form of the wave packets which

describes an evolution of the wave packets in free space or in a potential with a quadratic

dependence. This form is consistent with a Gaussian wave-packet evolution or with an
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evolution of a BEC in the approximation used by Castin and Dum [49] and applied in our

work for the numerical analysis (see section S5 of this file). For simplicity we use here a

one-dimensional model and assume that the wave packets completely overlap along the other

dimensions. We start from the following form

ψi(z, t) =
1√
λi
ψ0

(
z − Zi
λi

)
eiPi(z−Zi)/h̄e

im
2h̄

λ̇i
λi

(z−Zi)2

(S34)

where Zi(t), Pi(t) are the central position and momentum coordinates of the two wave packets

(i = 1, 2), respectively, and λi(t) are scaling factors due to expansion or focusing. Here ψ0(z)

is the initial wave-function, which is assumed to have a flat phase. The form of the wave

function in Eq. (S34) is a good approximation for the solution of the Schrödinger equation for

each wave packet if the sequence includes time-dependent potential gradients with a linear

or quadratic spatial dependence over the volume occupied by the atoms. Note that the same

equation is an exact solution for the evolution of a Gaussian wave packet in free-space or

under the influence of time dependent quadratic potentials.

Let us first take ψ0 to be a Gaussian of an initial width σz. In this case the overlap

integral between the two wave packets becomes

∫
dz ψ∗1(z, t)ψ2(z, t) =

1√
2πσ2

zλ1λ2

e−η∆z2/4eiφ
∫
dz e−ηz

2−i(∆P/h̄−ξ∆z)z, (S35)

where ∆P = P1 − P2, ∆z = Z1 − Z2, and φ is a phase which is not important here. The

parameters η and ξ are

η =
1

4σ2
z

(
1

λ2
1

+
1

λ2
2

)
+ i

m

2h̄

(
λ̇1

λ1

− λ̇2

λ2

)
, (S36)

ξ =
m

2h̄

(
λ̇1

λ1

+
λ̇2

λ2

)
+ i

1

4σ2
z

(
1

λ2
1

− 1

λ2
2

)
. (S37)

By performing the integral and taking the absolute value we obtain

V =

√
2λ1λ2

λ2
1 + λ2

2

∣∣∣∣∣exp

[
−(∆P/h̄− ξ∆z)2

4η
− η∆z2

4

]∣∣∣∣∣ (S38)

In general, the argument of the exponential is complex. However, if no differential quadratic
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potentials are applied during the sequence then λ1 = λ2 = λ and the wave packet size

σ(t) = σzλ(t) is the same for both . The parameters η(t) = 1/2σ(t)2 and ξ(t) = mσ̇(t)/h̄σ(t)

are then real and equal for both wave packets. We will now examine this simpler case.

Given a pair of wave-packets with the same size σ(t) = λσz and expansion rate λ̇ at a

given time, we may assume that these two wave-packets evolve in free space. In this case

the growth of the wave-packet size is given by

σ(t) = σ0

√
1 + ω2t2, (S39)

where t is the duration of time since the wave-packets were at their minimal size σ0 with a

flat phase (if σ̇ > 0, expansion) or the duration of time that it will take the wave-packets

to reach their minimal size (if σ̇ < 0, focusing). In this case σ0 =
√
h̄/2mω and therefore

ξ = ωt/2σ2. We therefore obtain the visibility

V = exp

[
−σ

2

2
(∆P/h̄−0 ωt∆z/2σ

2)2 − ∆z2

8σ2

]
, (S40)

where the argument of the exponent is explicitly time-dependent through t and σ = σ(t).

If we now use ∆z = ∆z0 + ∆Pt/m, where ∆z0 is the wave-packet separation at minimum

wave-packet size, then we obtain

V = e−σ
2
0∆P 2/2h̄2

e−∆z2
0/8σ

2
0 . (S41)

We have obtained exactly the original HD formula with the values of σz and ∆z projected

back (or forward) to the point where the two wave-packets are at their minimum size. The

procedure for calculating the overlap integral for wave-packets with the same size and phase

curvature is then as follows: if we know the current Gaussian size σ of the wave-packet and

its phase curvature ξ = (mσ̇/h̄σ then we can calculate the wave-packet parameters at the

minimum wave-packet size. These are given by

σ0 =
σ√

1 + 4ξ2σ4
(S42)

t =
4m

h̄

σ4ξ

1 + 4σ4ξ2
(S43)
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∆z0 = ∆z − t

m
∆P (S44)

Once the parameters σ0 and ∆z0 are found, Eq. (S41) can be used for calculating the overlap

integral. The overlap integral is exact for a Gaussian wave-packet and approximate for a

BEC wave-packet of a Thomas-Fermi shape that can be approximated by a Gaussian.

In order to estimate the expected visibility drop due to imperfections in our interfer-

ometric sequence we use the expression in Eq. (S41), which is similar to the original HD

expression except that it uses projected values for the wave packet size and the position shift

∆z. We estimate that in most of the experimental situations the final position shift ∆z is

negligible so that the main source of visibility reduction may be the momentum shift ∆P .

In our experiment we estimate that relative timing imprecision ∆T/T and current imper-

fections ∆I/I are of the order of 10−3. If follows that momentum shifts can be minimized,

upon a proper optimization procedure, to the order of ∆P ∼ 10−3P . A typical value of

the momentum in our experiment is P = 2πh̄/1µm, so that ∆P/h̄ ∼ 2π · 10−3 µm−1.. The

initial BEC Gaussian size σz is of the order of 1µm. It follows that the maximum visibility

is expected to be

[Vmax ∼ exp[−(2π · 10−3)2/2] ∼ 1− 2 · 10−5. (S45)

Even if our optimal ∆P is larger by an order of magnitude from this estimation we should

still expect a negligible reduction of the visibility by less than 1%. In view of the result, this

suggests that our experiment contains some unknown source of imprecision that is yet to be

discovered.

S8. TIME-IRREVERSIBILITY AND THE STERN-GERLACH INTERFEROME-

TER

The Stern-Gerlach interferometer (SGI) was used in previous theoretical studies for

demonstrating the irreversibility of quantum operations. In particular, the SGI apparatus

was sssumed to have a symmetric structure such that the splitting and stopping operations

are reversed by the accelerating and stopping at the second half of the sequence. Ideally

the second half of the SGI sequence is expected to bring the two wave packets into their

original spatial state where they overlap with each other at the initial position. However,
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this goal of the reverse operations is not a necessary requirement for spin-coherence. If the

two wave-packets overlap at any position and with any wave-packet size and wave-front full

spin coherence is expected to be achieved, as long as the overlap integral is 1, namely the

two wave-packet have the same spatial wave function which is not necessarily the original

one.

Here we show that even if the structure of the SGI is not symmetric as it was envisioned

in the past, its coherence still reflects the quality of time reversal in the system, which

is determined by the precision and stability of the quantum operations. Let us consider

an initial spatial state represented by a wave packet ψ0(r) and a spin state that is an

equal superposition 1√
2
(|+〉 + |−〉) of the two spin eigenstates |±〉. We may represent the

ideal operation of the SGI by |Ψfinal〉 = Ûideal(tf , 0)|Ψ0〉, where |Ψ0〉 is the initial spin state

superposition with the spatial wave function ψ0(r). The ideal SGI evolution operator can

be written as

Ûideal(t, 0) = UI+(t, 0)|+〉〈+|+ UI−(t, 0)|−〉〈−|, (S46)

where UI± are the ideal evolution operators for the two spin states, that take the two wave-

packets in two separated paths and are supposed to return them back to the exactly the

same spatial state, namely UI+(tf , 0) = UI−(tf , 0) for the final time tf (but they are different

for other times 0 < t < tf ). Here we also implicitely assume that the SGI ideal operation

is insensitive to the initial state ψ0 as it brings the two wave packets into full overlap with

each other regardless of the initial state.

Now consider the real (non-ideal) operations Ũ+(tf , 0) and Ũ−(tf , 0) which include the

effects of imprecision or instability. The visibility of the spin population signal at the end

of the process is given by the overlap integral of the two actual wave-functions ψ̃±(r, tf ) =

Ũ±(tf , 0)ψ0(r). This overlap integral can be written as

〈ψ̃+(tf )|ψ̃−(tf )〉 = 〈ψ0|Ũ+(tf , 0)†Ũ−(tf , 0)|ψ0〉 = 〈ψ0|Ũ †+UI+U †I−Ũ−|ψ0〉. (S47)

The last step is possible due to the equality of the ideal evolution operators, such that

UI+U
†
I− = UI+U

†
I+ = UI+U

−1
I+ = 1 for the final time tf .

It follows that the overlap integral, which determines the spin coherence of the SGI of an

arbitrary symmetry, is determined by the precision of the actual SGI operations Ũ±(tf , 0)

which is then reversed by the ideal operators UI±(tf , 0)−1 = UI±(0, tf ). If each of the
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forward and then backward time evolution operations lead to a wave function close enough

to the original wave-function ψ0,, i.e., if U−1
I+ Ũ+ ∼ 1 and U−1

I− Ũ− ∼ 1 then the sufficient

condition for high spin coherence is achieved. Note that this is not a necessary condition as

both operations may lead to a wave function that is different than ψ0 but still overlapping

between the two spin states. The necessary condition for spin-coherence is in fact that there

exist ideal unitary operations UI+ and UI− which are close to the actual evolution operators

at any time, such that UI+(tf , 0) = UI−(tf , 0) at the final time tf .

S9. MULTI-SHOT VISIBILITY AND ITS STANDARD ERROR

S9.1. Multi-shot visibility for a Gaussian noise

Multi-shot visibility characterizes an interference pattern obtained by averaging over

many interference patterns resulting from possibly different stopping distances d, relative

velocities (imperfect stopping) and phases of the two wave packets at different experimental

shots. Suppose that a single interference pattern is formed from a superposition of two wave

packets ψj+(r) and ψj−(r) corresponding to the two spin states during the splitting stage.

After the stopping these two wave packets represent two localized atomic states separated by

a distance d and after time-of-light (TOF) they represent extended overlapping wave packets

with a periodic phase difference. The averaged interference pattern is then proportional to

the sum,
N∑
j=1

[
||ψj+(r)|2 + |ψj−(r)|2 + ψ∗j+(r)ψj−(r) + ψ∗j−(r)ψj+(r)|

]
, (S48)

where the visibility is the magnitude of the last two term (interference term) relative to the

first two terms. If the phase of the individual interference patterns are distributed over some

range δφ the sum gives rise to a visibility that it reduced with respect to the visibility of the

single shot patterns. We take the wave packets to be normalized
∫
d3r |ψj±|2 = 1 and the

state in each shot to be an equal superposition of the two wave packets. If the interference

pattern in each shot has a large number of fringes (equivalent to a large separation of the wave

packets after stopping relative to the minimal size) then we can separate the interference

term from the two first terms by performing a Fourier transform of the multi-shot pattern.

The Fourier transform at the wave-vector k = 2π/λ, where λ is the periodicity extracts the

interference term while the Fourier transform at k = 0 extracts the two first terms. The
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ratio between these two Fourier transforms is the visibility, which is then given by

VN =
1

N

∣∣∣∣∣∣
N∑
j=1

∫
dz e−iktzψ∗j+(z, t)ψj,−(z, t)

∣∣∣∣∣∣ , (S49)

where t is the imaging time and kt is the mean wave-vector of the single interference patterns.

Here we ignored the transverse coordinates x and y and assumed a meaningful dependence

of the wave-function only along the z direction.

Let us now assume that the main source of fluctuations in our system is current variations

during the splitting pulse (of duration T1). As we have shown in section S6 if the stopping

pulse is perfect then in the long time-of-flight limit the interfering wave packets have the

scaled form as the initial wave packets after splitting, projected backward to the time t = 0

at the middle of the splitting pulse. In our case where the atoms move very little during the

pulse this time may be taken as the time just after the pulse. At this time the spatial shape

of the two wave packets is almost the same while phase difference between them at the j’th

shot is

∆φj(z) =
∆mFgF

h̄

∫
dtBj(z, t) ≈ kj(z − z0) + δφj, (S50)

where h̄kj = ∆FjT1 is the differential momentum applied by the splitting pulse at the

experimental shot j (∆Fj = ∆mFgFµB(∂Bj/∂z)z=z0 being the differential force applied

during the splitting on the atoms of spins differing by ∆mF ). Here z0 is the position

of the center of the quadrupole field, where the field from the splitting pulse is zero, and

δφj = ∆mFgFµBB0T0/h̄ is the phase from the homogeneous bias field B0, which accumulates

during a time T0 > T1 when the atoms occupy different spin states and may differ from shot

to shot.

Taking initial shape of the wave packets to be Gaussian, the form of the wave packets

just after the projected time t = 0+ becomes

ψj,±(z, 0+) = ψ0(z − zj)eiφj,±(z) ∝ e−(z−zj)2/4σ2

eiφj,±(z), (S51)

where zj is the initial center position of the wave packet in the experimental cycle j, which

is assumed to have a random distribution of variance 〈δz2〉, which is uncorrelated with the

phase or momentum fluctuations. These phase and momentum shifts are contained in the

phase terms φj,±, whose difference φj,+ − φj,− = ∆φj is given in Eq. (S50).
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We assume that the many experimental shots represent a Gaussian distribution of the

momentum and phase fluctuating parameters kj and δφj. For a Gaussian distribution of

phase φ we use the identity

〈eiφ〉 = ei〈φ〉e−〈δφ
2〉/2, (S52)

where δφ = φ− 〈φ〉. We then obtain in the limit N →∞

1

N

∑
j

ψ∗j+(z)ψj−(z)→ Gσ̄(z − z̄)ei〈∆φ〉e−〈δk
2〉(z−z0)2/2e−〈δφ

2〉/2, (S53)

where Gσ̄(z − z̄) = 〈|ψ0(z − zj)|2〉 is a Gaussian with extended width σ̄ =
√
σ2 + 〈δz2

j 〉

centered around the average initial position z̄ = 〈zj〉, which represents the normalized sum

over many Gaussian envelopes each having a width σ. This implies that the contribution of

current fluctuations leading to momentum fluctuations grows for wave packet parts that are

initially located further away from the quadrupole center, giving rise to a chirped visibility

pattern.

In order to obtain the overall visibility defined in Eq. (S49) we Fourier transform Eq. (S53)

and find

VN→∞ =
1√

1 + σ̄2〈δk2〉
e−〈δφ

2〉/2 exp

[
−1

2

(z̄ − z0)2〈δk2〉
1 + σ̄2〈δk2〉

]
(S54)

In Fig. 3 of the main text we have used this equation as the basis for the calculation of the

solid theoretical curves. We neglect the fluctuations of the bias field (δφ = 0) and assume

that the momentum fluctuations are caused by current fluctuations in the chip wires. The

momentum uncertainty is then

δkrms =
µB
2h̄

∂B

∂z

∣∣∣∣∣
z=z̄

T1
δIrms

I
= 〈k〉ε, (S55)

where ε = δIrms/I is the relative current fluctuation. In our case we obtain 〈k〉/T1 =

0.86 (µmµs)−1, while |z̄ − z0| ≈ 5µm.

S9.2. Standard error of multi-shot visibility

Let us now consider the uncertainty δVN which is the standard error of the multi-shot

visibility VN due to the finite number N in a sample. For simplicity we consider only global
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phase fluctuations, such that the multi-shot visibility is

VN =
1

N

∣∣∣∣∣∣
N∑
j=1

eiφj

∣∣∣∣∣∣ ≡ 1

N
|SN | . (S56)

We have V 2
N = N−2[(ReSN)2 + (ImSN)2], which has the explicit form

1

N2
[ReSN ]2 =

1

4N2

∑
j,k

[ei(φj+φk) + ei(φj−φk) + c.c.] (S57)

1

N2
[ImSN ]2 =

1

4N2

∑
j,k

[−ei(φj+φk) + ei(φj−φk) + c.c.]. (S58)

By summing over the real part and imaginary part and separating the sum
∑
j e

i(φj−φk) into

the case j = k and j 6= k we obtain

V 2
N =

1

N

1 +
1

2N

∑
j 6=k

(ei(φj−φk) + c.c.)

 . (S59)

By taking an average over ensembles with Gaussian distribution of the phases and using

Eq. (S52), the average over each of the N(N − 1) terms in the sum over j 6= k becomes

e−〈δφ
2〉2 = 〈VN〉2 and we have

〈V 2
N〉 − 〈VN〉2 =

1

N
(1− 〈VN〉2). (S60)

When the distribution of phases is narrow and 〈VN〉 ∼ 1 the standard error of the multi-

shot visibility is small, but when the visibility is small the standard error goes to the limit

δVN ∼ 1/
√
N .

S10. DEPHASING DUE TO ELECTRONS

Let’s begin by calculating how a single atom interacts with a single electron. The electron

produces a current in the atom-chip wire, and the atom is in a superposition of spin states:

its magnetic moment is either pointing towards the electron or away from it. Let |e〉 be

the initial state of the electron, and [|A+〉+ |A−〉] /
√

2 the initial state of the atom, before

they interact and entangle. When the interaction between the atom and electron turns on,
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it entangles them and their state is

|Ψ〉 = [|e−〉|A+〉+ |e+〉|A−〉] /
√

2, (S61)

where the combinations |e−〉|A+〉 and |e+〉|A−〉 remind us that if the atom gains momentum

then the electron looses momentum (along the same axis) and vice versa. But while the

states |A+〉 and |A−〉 are orthogonal atom spin states, |e+〉 and |e−〉 are not necessarily

orthogonal. The absolute value of their inner product |〈e − |e+〉| could range from 0 to 1

depending on the strength of the entangling interaction.

To get the interference pattern, we have to calculate the absolute value squared of |Ψ〉.

The bra-ket notation is not especially convenient, but we know that the result is that the

interference pattern of the atom will be multiplied by |〈e−|e+〉|, which can equal 1 (the

electron carries away no information about the atom superposition and does not affect its

visibility) or can be less than 1 (in which case the visibility cannot be 1, regardless of relative

clock times, etc.). Let’s assume that the atom has picked up (lost) momentum pz, in which

case the electron has lost (picked up) momentum pz. Taking 20 T/m for the gradient, 10−23

J/T for the Bohr magneton, and gF = −1/2, we get 10−22 J/m for the force; and if the force

lasts about 20 µs, then pz ≈ 2× 10−27 kg m/s.

The next step is to consider N atoms instead of one atom. These atoms are initially in a

product state [|A+〉+ |A−〉]⊗N 2−N/2. If we expand this expression in a binomial expansion,

the important terms are not those with the largest magnetic moment (N times a single

magnetic moment) but those with the greatest degeneracy (
√
N times a single magnetic

moment). Thus the total momentum exchange Pz is not pz and not Npz but Pz ≈
√
Npz. If

N ≈ 104, then Pz ≈ 100pz ≈ 2× 10−25 kg m/s. Now, if all this momentum were transferred

to a single electron, it would be a very serious effect, as follows. The width of the wire in the

z direction is 2 µm, thus ∆z ≤ 2µm. Therefore ∆Pz ≥ h̄/(2× 2 µm) ≈ 3× 10−29 kg · m/s,

which is four orders of magnitude smaller than Pz, so the effect of the momentum exchange

should be clearly visible. But the N atoms do not all couple to one electron. There are

about 1014 electrons around, each with ∆z ≤ 2 µm, and the average momentum gain or

loss of each electron is about 3× 10−39 kg · m/s, undetectable according to the uncertainty

principle. This division by 1014 is probably not justifiable, because most of the electrons are

deep in the Fermi sea and don’t absorb or lose any momentum. But taking the estimate
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that only about 1% of the electrons are near the Fermi level and only these interact, we still

get 1012 electrons and an average momentum gain or loss per electron of about 3× 10−37 kg

· m/s, still undetectable according to the uncertainty principle. Hence there is no dephasing

of the atoms via the electrons, because no measurement procedure on the electrons can

reveal the spin state of the atoms.

S11. COMPARISON TO THE STATE-OF-THE-ART (FRENCH SG EXPERI-

MENTS)

For completeness, we compare our experiments to previous SG type interferometry exper-

iments although these were significantly different [14–24]. Baudon, Robert, and colleagues,

have realized a series of elaborate SGI experiments over a period of 15 years and, more re-

cently, even applied the SG effect to the study of twin-atom angular momentum coherence in

the photodissociation of H2 [50]. While their longitudinal beam interferometer did observe

interference fringes, this interferometer is very different from the interferometers presented

here. Most importantly, as explained in detail in one of their papers [19], their experiment

is not an analogue of the full-loop configuration as only splitting and stopping operations

were realized (i.e., no recombination); namely, wavepackets exit the interferometer with the

same separation as the maximal separation achieved within. Fig. 2 of Ref. [19] shows the

scheme of the beam experiment. As can be seen, only a splitting and a stopping pulse are

applied. This creates what the authors call, a “beaded atom” [15]. We have not found

anywhere in the many papers published by this group (only some of which we referenced)

evidence of four operations being applied as required for a full-loop configuration, whether

the experiment was with longitudinal or transverse gradients. This also means that these

experiments could not probe imprecision as an origin of TI or the HD effect.

Furthermore, also within the framework of the half-loop configuration, there are many

differences from our experiment. Mainly, the beam experiments could not image high visi-

bility spatial interference fringes, as presented in Fig. 1 of our main text. In fact, we believe

that no spatial interference fringes were observed at all, and that the spatial modulation

presented in [21, 23] is an ensemble of many trajectories, each undergoing Ramsey inter-

ferometry, and not a result of any coherent spatial splitting. Let us explain why. First we

divide the explanation into two scenarios: a longitudinal effect and a transverse effect. The
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French group studied both effects.

Longitudinal effect: It is clear from their papers that no spatial fringes have been observed

in the longitudinal direction when the splitting was longitudinal (i.e. along the propagation

of the beam). In contrast, such longitudinal spatial fringes are precisely what we observe in

our experiment. Indeed, this would have been an impossible task in the beam experiments

taking into account the beam velocity spread and the fact that the signal is a sum of an

enormous amount of wave packet pairs, situated at different positions along the beam (and

indeed there is no claim in the papers that longitudinal spatial fringes were observed).

Similarly, the beam experiments could not verify the existence of two independent and

separated wavepackets, while in our case we image them explicitly (see experimental sections

of this SM). Let us also mention that the achieved separation in the French work for seeing

any interference pattern (they used a spin population signal) was only a few Angstrom [19]

while in our experiment it is a few µm (they report inducing much larger separations, but

with no matter-wave interference pattern [17]). More importantly, their separation is the

same as the wavepacket width (or coherence length), while ours went up to 18 times the

wavepacket width.

Transverse effect: Reading the abstract of Ref. [23], one may be slightly confused to

think that a spatial interference pattern has been observed: “When a static radial magnetic

gradient is used, the beam profile is modulated by interference. The transverse pattern,

which can be translated at will by adding a homogeneous field, is observed for the first

time using a multi-channel electron multiplier followed by a phosphor screen and a CCD

camera.” Indeed, Figs. 12 and 13 in [23] show beautiful spatial modulations of the signal

in the plane perpendicular to the beam propagation axis. However, we believe these are

not spatial interference fringes (i.e. originating from a spatial splitting), and we find in the

published studies no proof or clear statement that they are.

What we believe is the dominant effect in producing the observed transverse modulation is

that the atomic beam gives rise to many parallel (with a slight diverging angle) trajectories,

each undergoing Ramsey interferometry. The quadrupole field (in the plane transverse to

the beam propagation, see Fig. 9 of [23]) acts as a spatially varying “phase plate” which gives

a different internal phase to each of the Ramsey interferometers, thereby giving a different

spin population at the output of each interferometer. This modulation of the spin output

then appears as a spatial modulation in the plane perpendicular to the beam propagation
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axis. Indeed, Fig. 10 shows that a full-cycle (2π) spin-population oscillation requires a change

of 14 mA, corresponding to 6.3 mG (the caption states 0.45 mG/mA). On the other hand,

the caption of Fig. 12 states that the 10 mm-diameter of the phosphor screen corresponds to

2.4 mm at the interferometer mid-point (10 mm x 314 mm/1202 mm from Fig. 1). A gradient

of 12.75 mG/mm (fourth panel of Fig 12) produces a pattern with a modulation periodicity of

2.45 mm (peak-to-peak distance measured along the y-axis of the MCP image). In addition,

2.45 mm at the MCP corresponds to 0.59 mm at the interferometer mid-point (= 2.45 mm

x 2.4 mm/10 mm), which in turn corresponds to a change in field of 7.5 mG (= 0.59 mm x

12.75 mG/mm), which is very close to the 6.3 mG obtained above for the longitudinal full-

cycle spin-population oscillation. Similarly, eqns.(7) and (9) of Ref. [23] both yield phase

shifts ϕ of π radians using the experimental values for the homogeneous field BH [eqn.(7)]

and the gradient G [eqn.(9)]. We have also calculated the transverse magnetic force acting

on the two spin wavepackets (by using the above gradient stated by the authors), and find

that indeed a very small separation is induced (on the order of an Angstrom) so that the two

wavepackets still transversely overlap at the analyzer such that a Ramsey sequence could be

completed, the latter being the essence of the longitudinal SGI when no significant splitting

is applied. We believe this explains the main features observed.

For the previous experiment, we also considered the possibility of a spatial interference

scenario, i.e., in which a spatial splitting is the source of the observed fringes. Even if we

consider the above separation of an Angstrom as a two-point source (e.g., like a double

slit experiment), there are many two-point sources identical to this one which are slightly

shifted in their position along the transverse dimension up to the width of the beam of a

few millimeters. As this is also the periodicity of the observed fringes, any fringe should be

washed out and we cannot see how any visibility may survive.

Consequently, to the best of our understanding, the only previous SG spatial interference

pattern was achieved in our own work [35], in which low visibility fringes were observed. To

conclude, it is clear that the new experiments reported here go well beyond the previous

state-of-the-art.
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