Freezing of spinor dynamics in an ultracold Bose gas via microwave dressing

Zhifan Zhou¹, Madison Anderson¹, Don Fahey¹, Jonathan Wrubel², Paul Lett¹

Spinor dynamics in optical trap: introduction

$$\dot{\rho_0} = -(2/\hbar)\partial E/\partial \theta$$

 $\dot{\theta} = (2/\hbar)\partial E/\partial \rho_0$.

Trap release, Stern-Gerlach pulse, time-of-flight expansion, absorption imaging.

Dynamical evolving in phase space

$$E = q (1 - \rho_0) + c\rho_0[(1 - \rho_0) + \sqrt{(1 - \rho_0)^2 - m^2 \cos\theta}]$$

$$\dot{\rho}_0 = -(2/\hbar)\partial E/\partial \theta$$

$$\dot{\theta} = (2/\hbar)\partial E/\partial \rho_0.$$

BEC:

Density-dependent dynamics

BEC/thermal mixture?

Trap release, density change during time-of-flight

Magnetic field vs microwave dressing: large q

Linear order is cancelled, Quadratic Zeeman energy is left.

$$q = h \left(277 \text{ Hz/G}^2 \right) B^2$$

MW dressing: Fast switch on/off Flexible direction +/-

Freezing the spinor dynamics: experiment

The freezing/evolution time, in principle, is limited by the optical trap lifetime. Interrogate phase running situation, state-mixing atom loss.

Conclusion

- Analyze density-dependent spinor dynamics
- Freeze the population dynamics while the phase running gets faster via q≫c
- Experimentally demonstrate the freezing of the population dynamics via microwave dressing

Freezing of spinor dynamics in an ultracold Bose gas via microwave dressing

Zhifan Zhou¹, Madison Anderson¹, Don Fahey¹, Jonathan Wrubel², Paul Lett¹

1. Joint Quantum Institute, NIST and the University of Maryland

