Freezing of spinor dynamics in an ultracold Bose gas via microwave dressing

Zhifan Zhou ${ }^{1}$, Madison Anderson ${ }^{1}$, Don Fahey ${ }^{1}$, Jonathan Wrubel ${ }^{2}$, Paul Lett ${ }^{1}$ 1. Joint Quantum Institute, NIST and the University of Maryland

Spinor dynamics in optical trap: introduction

$$
\dot{\rho_{0}}=-(2 / \hbar) \partial E / \partial \theta
$$

Trap release, SternGerlach pulse, $\dot{\theta}=(2 / \hbar) \partial E / \partial \rho_{0} . \quad$ time-of-flight expansion, absorption imaging.

Dynamical evolving in phase space

$$
\begin{gathered}
E=q\left(1-\rho_{0}\right)+c \rho_{0}\left[\left(1-\rho_{0}\right)\right. \\
\left.+\sqrt{\left(1-\rho_{0}\right)^{2}-m^{2}} \cos \theta\right] \\
\dot{\rho}_{0}=-(2 / \hbar) \partial E / \partial \theta \\
\dot{\theta}=(2 / \hbar) \partial E / \partial \rho_{0} .
\end{gathered}
$$

BEC:

Density-dependent dynamics

$$
\begin{aligned}
& \begin{array}{l}
\text { Particle density in BEC } \\
\text { is roughly 10 times higher } \\
\text { than in thermal gas. }
\end{array} \\
& c=c_{2} \bar{n}
\end{aligned}
$$

BEC/thermal mixture?

Trap release, density change during time-of-flight

Key to population oscillation freezing: $q \gg c$

$$
\begin{aligned}
& \dot{\rho}_{0}=-(2 / \hbar) \partial E / \partial \theta \\
& \dot{\theta}=(2 / \hbar) \partial E / \partial \rho_{0}
\end{aligned}
$$

External term

$$
c=c_{2} \bar{n}
$$

Collisional term

$$
E=q\left(1-\rho_{0}\right)+c \rho_{0}\left[\left(1-\rho_{0}\right)+\sqrt{\left(1-\rho_{0}\right)^{2}-m^{2}} \cos \theta\right]
$$

1.0
-
\square

.
[
-

L

Magnetic field vs microwave dressing: large q

MW dressing:
Fast switch on/off
Flexible direction +/-

Freezing the spinor dynamics: experiment

The freezing/evolution time, in principle, is limited by the optical trap lifetime. Interrogate phase running situation, state-mixing atom loss.

Conclusion

- Analyze density-dependent spinor dynamics
- Freeze the population dynamics while the phase running gets faster via q>>c
- Experimentally demonstrate the freezing of the population dynamics via microwave dressing

$$
\begin{gathered}
\text { External term } \quad c=c_{2} \bar{n} \quad \text { Collisional term } \\
E=q\left(1-\rho_{0}\right)+c \rho_{0}\left[\left(1-\rho_{0}\right)+\sqrt{\left(1-\rho_{0}\right)^{2}-m^{2}} \cos \theta\right]
\end{gathered}
$$

Freezing of spinor dynamics in an ultracold Bose gas via microwave dressing

Zhifan Zhou ${ }^{1}$, Madison Anderson ${ }^{1}$, Don Fahey ${ }^{1}$, Jonathan Wrubel ${ }^{2}$, Paul Lett ${ }^{1}$

1. Joint Quantum Institute, NIST and the University of Maryland

2. Creighton University

Thank you!

